Compod[™]

Programmierbares Steuermodul für

SmartTrak[®]Serie 100 Massedurchflussmesser und Regler

Typen: C100, M100, C100 HP, M100 HP, C101, M101, C140

Bedienungsanleitung

Revision 1 Juni 2020

Vögtlin Instruments GmbH – gas flow technology St. Jakob-Strasse 84 | 4132 Muttenz (Switzerland) Tel. 41 (0)61 756 63 00 | Fax +41 (0)61 756 6301 www.voegtlin.com | info@voegtlin.com

GLOBAL SUPPORTS STANDORTE: WIR SIND HIER UM ZU HELFEN!

Europe:

Vögtlin Instruments GmbH - gas flow technology St. Jakob-Strasse 84 CH-4132 Muttenz (Schweiz) Tel +41 (0)61 756 63 00

Fax +41 (0)61 756 63 01 www.vögtlin.com info@voegtlin.com

Die technischen Daten in diesem Handbuch können sich aufgrund steter Verbesserung des Produktes jederzeit ohne Vorankündigung ändern. Bei Unstimmigkeiten zwischen dieser aus dem englischen Original übersetzten deutschen Ver- sion und dem englischen Original gelten die in dem englischen Original gegebenen Angaben.

Der Hersteller haftet nicht für Sach- oder Personenschäden, die durch den Einsatz und Gebrauch seiner Massedurchflussmesser/-reglern mit Sauerstoff entstehen. Obwohl die Massedurchflussmesser vor der Auslieferung gründlich gereinigt werden, wird dafür weder eine Garantie noch eine Rücknahmeverpflichtung übernommen; speziell beim Einsatz mit Sauerstoff. Der Kunde muss die Massedurchflussmesser/-regler auf den Sauberkeitsgrad bringen, der für den vorgesehenen Einsatz erforderlich ist.

Vor Reinigung des Gerätes sollte der Massedurchflussmesser/-regler gut gespült werden, speziell dann, wenn toxische oder korrosive Gase gemessen wurden. Senden Sie niemals ein kontaminiertes Gerät zur Reparatur oder Kalibrierung ein. Legen Sie bei Versand dem Gerät eine im Anhang befindliches ausgefülltes Reparatur- und Kalibrierdatenblatt bei.

Urheberrecht und Haftungsausschluss

Alle Rechte vorbehalten. Kein Teil dieser Publikation darf in irgendeiner Form oder mit irgendwelchen Mitteln ohne vorherige schriftliche Genehmigung des Herausgebers reproduziert werden. Der Inhalt dieses Handbuchs dient ausschließlich Informationszwecken und kann ohne vorherige Ankündigung geändert werden. Vögtlin Instruments GmbH übernimmt keine Verantwortung oder Haftung für etwaige Fehler oder Ungenauigkeiten in diesem Handbuch

TRADEMARKS

SmartTrak[®] 100 Series und Dial-A-Gas[®] sind eigetragene Handelsnamen der Fa. Vögtlin Instruments GmbH. Andere Produkte oder Bezeichnungen die in diesem Handbuch erwähnt werden, sind Handelsnamen oder Handelsmarken ihrer jeweiligen Hersteller.

INHALTSVERZEICHNIS
WICHTIGE KUNDENMITTEILUNG
KAPITEL 1: EINLEITUNG7
Sicherheitshinweise
KAPITEL 2: INSTALLATION
KAPITEL 3: ELEKTRISCHE ANSCHLÜSSE9
Pin-Anordnung9
Gerät und Compod™ Leistung10
RS485 Anschluss10
Allgemeine 2-Draht Verschaltung RS48511
Daisy Chain Einheiten11
analoge Eingänge12
Impuls Ausgänge12
digitale Ausgänge12
Relais Ausgänge12
Kapitel 4: Kommunikation14
Inbetriebnahme14
Inbetriebnahme
Inbetriebnahme 14 Datenformat verschiedener Register 14 Übersicht Modbus Register 15
Inbetriebnahme14Datenformat verschiedener Register14Übersicht Modbus Register15spezielle Modbus Einrichtungsregister17
Inbetriebnahme14Datenformat verschiedener Register14Übersicht Modbus Register15spezielle Modbus Einrichtungsregister17Erklärung Register17
Inbetriebnahme14Datenformat verschiedener Register14Übersicht Modbus Register15spezielle Modbus Einrichtungsregister17Erklärung Register1740001: aktueller Durchfluss17
Inbetriebnahme14Datenformat verschiedener Register14Übersicht Modbus Register15spezielle Modbus Einrichtungsregister17Erklärung Register1740001: aktueller Durchfluss1740003: Sollwert17
Inbetriebnahme14Datenformat verschiedener Register14Übersicht Modbus Register15spezielle Modbus Einrichtungsregister17Erklärung Register1740001: aktueller Durchfluss1740003: Sollwert1740005 – 40008: Totalisator18
Inbetriebnahme14Datenformat verschiedener Register14Übersicht Modbus Register15spezielle Modbus Einrichtungsregister17Erklärung Register1740001: aktueller Durchfluss1740003: Sollwert1740005 – 40008: Totalisator1840009: Ventilsteuerung18
Inbetriebnahme14Datenformat verschiedener Register14Übersicht Modbus Register15spezielle Modbus Einrichtungsregister17Erklärung Register1740001: aktueller Durchfluss1740003: Sollwert1740005 – 40008: Totalisator1840010 - 40011: analoge Eingänge (1&2)18
Inbetriebnahme14Datenformat verschiedener Register14Übersicht Modbus Register15spezielle Modbus Einrichtungsregister17Erklärung Register1740001: aktueller Durchfluss1740003: Sollwert1740005 – 40008: Totalisator1840010 - 40011: analoge Eingänge (1&2)1840012: digitale Eingänge18
Inbetriebnahme14Datenformat verschiedener Register14Übersicht Modbus Register15spezielle Modbus Einrichtungsregister17Erklärung Register1740001: aktueller Durchfluss1740003: Sollwert1740005 – 40008: Totalisator1840010 - 40011: analoge Eingänge (1&2)1840012: digitale Eingänge1840013: digitale Ausgänge18
Inbetriebnahme 14 Datenformat verschiedener Register 14 Übersicht Modbus Register 15 spezielle Modbus Einrichtungsregister 17 Erklärung Register 17 40001: aktueller Durchfluss 17 40003: Sollwert 17 40005 – 40008: Totalisator 18 40009: Ventilsteuerung 18 40010 - 40011: analoge Eingänge (1&2) 18 40012: digitale Eingänge 18 40013: digitale Ausgänge 18 40014: Alarm Status 18

40017: benutzerdefinierter Skalenendwert
40019: Kalibrierbereich19
40021: Triggerpunkt unterer Alarm "1"19
40023: Triggerpunkt oberer Alarm "1"19
40025: Triggerpunkt unterer Alarm "2"19
40027: Triggerpunkt oberer Alarm "2"19
40029: Alarmsteuerung
40030: Triggerquelle Alarm "1"
40031: Triggerquelle Alarm "2"19
40032: analoge Eingangs-Steuerung19
40033: Impuls Ausgangs-Steuerung
40034: Gas Index
40035: Ventil Einstellungen
40036: Durchfluss-Einheiten21
40037: Passwort
40038: Sollwert Einheiten
40039: analoge Ausgangs Einheiten22
40040: Firmware Status22
40042: Geräte Typ22
40043 - 40046: Seriennummer
40047 - 40051: Kennzeichnung (Tag-Nr.)23
40052 – 40059: Gasname 1
40060 – 40067: Gasname 2
40076 – 40083: Gasname 4
40084 – 40091: Gasname 523
40092 – 40099: Gasname 6

401	00 – 40107: Gasname 72	23
401	08 – 40115: Gasname 82	23
401	16 – 40123: Gasname 92	23
401	24 – 40131: Gasname 102	23
401	32: Sensor Daten2	23
401	33: Rücksetzen der Einheiten auf "Null"2	23
401	34: Rücksetzen auf Werkseinstellungen2	23
Spezie	lle Modbus Register2	24
441	20: ID-Code	24
441	01: Baudrate	24
441	D2: Parität	24
441	D3: TX Verzögerung2	24
441	04: Rücksetzen der Eiheiten2	24
Chapter	5: Alarm system	25
Alarm	Prinzip2	25
Alarm	Steuerung	25
Alaı	m Kontroll Register2	25
Trig	ger Quelle2	27
Trig	ger Punkt (level)2	27
Alaı	m Status Register2	28
Beispi	ele:2	28
Alar	m f. zu hohen und zu niedrigem Durchfluss2	28
٨٩٥	shalton dos Durshflussos durch oxtornon Schaltor	29
ADS		
Tan	xbefüllung um das Druckniveau zu halten2	29
Tan Kapitel 6	<pre>charten des Durchnusses durch externen scharter</pre>	29 31
Tan Kapitel 6 Bildscl	xbefüllung um das Druckniveau zu halten	29 31 32
Tan Kapitel 6 Bildscl Chapter	<pre>charten des Durchnusses durch externen scharter</pre>	29 31 32 33

Anhang A: COMPOD [™] Anwendungshandbuch	
Fehlerbehebung	37
Bootloader beenden	37
Firmware einrichten	36
Firmware download (normalerweise nicht erforderlich)	34
erste Schritte	

Der Compod[™] ist ein Modbus-Zusatzmodul für die Smart-Trak[®] Serie 100 Massedurchflussmesser/- Regler von Vögtlin Instruments GmbH.

Eine Vielzahl von Funktionen ermöglicht die Integration des Smart-Trak[®] in eine Modbus-Netzwerkumgebung. Unter diesen Merkmalen:

- Zugang zu allen wichtigen Daten
- Ausgeklügeltes Alarmsystem
- Totalisator
- Impulsausgang
- Analoge Eingänge
- Smart-Trak[®]-Funktionsmonitor
- Digitale Ausgänge

SICHERHEITSHINWEISE

Vorsichts- und Warnhinweise werden in diesem Handbuch verwendet, um Sie auf wichtige Informationen aufmerksam zu machen.

Vorsichtshinweis!

Warnhinweis!

Dieser Hinweis wird zum Schutz Ihres Gerätes und der Funktion aufgezeigt. Beachten Sie bitte die dort gegebenen Hinweise.

Dieser Hinweis deutet auf Gefahren für Personen oder auf mögliche Beschädigungen des Gerätes hin. Achten Sie hier auf die gegebenen Schutzmaßnahmen.

UM DEN COMPOD™ UND SEINE FUNKTIONEN VOLLSTÄNDIG ZU VERSTEHEN, WIRD EMPFOHLEN, AUCH DIE BEDIENUNGSANLEITUNG ZU SMART-TRAK® SERIE 100 ZU LESEN

KAPITEL 2: INSTALLATION

Wenn der Compod[™] zu einem Smart-Trak[®] hinzugefügt werden soll, wenden Sie sich bitte an Vögtlin Instruments GmbH.

KAPITEL 3: ELEKTRISCHE ANSCHLÜSSE

Alle elektrischen Anschlüsse werden auf der linken Seite vom Compod[™] vorgenommen. Es gibt zwei D9-Anschlüsse, die Zugang zu Eingangsstrom, Netzwerkschnittstelle und anderen Optionen bieten.

PIN-ANORDNUNG

Die Abbildung unten zeigt die Benennung der Anschlüsse.

COM1

CONT	
Pin	Funktion
1 (Pfeil)	RS485-Abschirmung
2	+24V Stromversorgung
3	ID0 - Selektions-Bit
4	ID1 - Selektions-Bit
5	RS485 – B
6	ID2 – Selektions-Bit
7	Erdung
8	ID3 – Selektions-Bit
9	RS485 – A

COM2	
Pin	Funktion
1 (Pfeil)	RS485-Abschirmung
2	+24V Stromversorgung
3	Analogeingang 1
4	Impulsausgang /
	Analogeingang 2
5	RS485 – B
6	Digitaler Ausgang1
7	Erdung
8	Digitaler Ausgang2
9	RS485 – A

DIE PINBELEGUNG FÜR P1 FINDEN SIE IN DER BEDIENUNGSANLEITUNG ZU SMART-TRAK® SERIE 100

Beim Einschalten oder Reset werden die ID-Pins (TTL-kompatibel) gescannt. Diese Pins setzen den Modbus-ID-Code.

ID2	ID1	ID0	Modbus ID
offen	offen	offen	Interne ID
offen	offen	GND	1
offen	GND	offen	2
offen	GND	GND	3
-	-	-	
GND	GND	GND	15
	ID2 offen offen offen - GND	ID2ID1offenoffenoffenoffenoffenGNDoffenGNDGNDGND	ID2ID1ID0offenoffenoffenoffenoffenGNDoffenGNDoffenoffenGNDGNDGNDGNDGND

(Verbinden Sie den Pin mit der Erdung, um ihn zu aktivieren.)

GERÄT UND COMPOD™ LEISTUNG

Die +24V-Versorgung und die Netzrückleitung (GND) des Geräts und Compod[™] sind intern miteinander verbunden. Die Stromversorgung kann auf die folgenden zwei Arten angelegt werden:

1. Schließen Sie die Stromversorgung an den HD DB-15-Anschluss (P1) des Instruments an.

2.

Schließen Sie die Stromversorgung an einen der DB-9-Anschlüsse (COM1 oder COM2) des Compod™ an.

Stromversorgungsanforderungen

Instrumenten- Typ	Empfohlene Eingangsspannung	Minimaler Strombedarf (mA)	
Meter	12-30 Vdc	250	
Regler	24-30 Vdc	410	

RS485 Anschluss

DER COMPOD[™] IST MIT EINER OPTISCH ISOLIERTEN RS485-SCHNITTSTELLE AUSGESTATTET. VERBINDEN SIE DEN RS485-SCHIRM NICHT MIT DER ERDUNG DER STROMVERSORGUNG, ES SEI DENN, DIE ISOLIERTE BARRIERE IST NICHT ERFORDERLICH.

ALLGEMEINE 2-DRAHT-Verschaltung RS485-NETZWERK

Die "RS485 - A" (auch als "-" bezeichnet) ist mit der D0-Leitung verbunden. Die "RS485 - B" (auch als "+" bezeichnet) ist mit der D1-Leitung verbunden. Der Schirm ist mit der gemeinsamen Leitung des Netzwerks verbunden. Die Verwendung von Leitungsendabschlüssen hängt von der Kabellänge ab und sollte vor Ort festgelegt werden.

DAISY-CHAIN-EINHEITEN

Mit den Anschlüssen COM1 & COM2 ist es möglich, mehrere Einheiten in Reihe zu schalten. Ein spezielles Kabel kann verwendet werden, um die erste Einheit über COM2 mit der nächsten Einheit über COM1 zu verbinden.

Das folgende Bild zeigt, wie die Einheiten miteinander verbunden werden können.

Die folgenden Stifte werden für das Verbindungskabel verwendet:

- 1 (RS485 Schirm)
- 2 (+24V Stromversorgung)
- 5 (RS485 B)
- 7 (Erdung)
- 9 (RS485 A)

ANALOGE EINGÄNGE

Die Analogeingänge können zum Anschluss verschiedener Messwertaufnehmer (Temperatur, Druck usw.) verwendet werden. Der maximale Eingangsbereich beträgt 0-10 Vdc oder 0-20 mA. Über das Modbus-Steuerregister (40028) können verschiedene Optionen eingestellt werden. Analogeingang 2 (COM2-4) hat eine Doppelfunktion. Wenn der Impulsausgang aktiviert ist, steht der Analogeingang nicht zur Verfügung.

PULSAUSGANG

Der Impulsausgang ist ein Schalter gegen Masse mit einem Vorwiderstand von 250 Ohm.

DIE MAXIMALE PULSIONSPANNUNG BETRÄGT 10 VDC; DER MAXIMALE STROM, DEN DER AUSGANG SCHALTEN KANN, BETRÄGT 20 MA. DIESE WERTE DÜRFEN NICHT ÜBERSCHRITTEN WERDEN, DA SONST SCHÄDEN AUFTRETEN KÖNNEN.

DIGITALE AUSGÄNGE

Es stehen zwei digitale Ausgänge zur Verfügung, die über Modbus gesteuert werden können. Die Ausgänge sind TTLkompatibel.

Die Ausgänge werden auch für das Alarmsystem verwendet, wenn sie aktiviert sind.

RELAIS-AUSGÄNGE

Bei Bedarf können die Ausgänge durch einen speziellen optionalen Zusatz in Relaisausgänge umgewandelt werden. Bitte kontaktieren Sie Ihren Vertriebsmitarbeiter für weitere Informationen.

SCHLIESSEN SIE NIEMALS EIN FERNPILOTMODUL AN DAS GERÄT AN, WENN EIN COMPOD™ DARAUF MONTIERT IST. ES KANN ZU SCHÄDEN KOMMEN. Sobald der Compod[™] mit dem Netzwerk verkabelt und eingeschaltet ist, können Si mit der Kommunikation beginnen. Die Einstellungen für die Modbus-Schnittstelle sind wie folgt:

- ID-Code = 255 (oder 1 15, abhängig von den ID-Pin-Einstellungen)
- Baudrate = 19200
- Parität = Gerade
- Anzahl der Bits = 8
- Stoppbit = 1
- Verzögerung zwischen Empfangen und Übermitteln = 2 ms

Die obigen Einstellungen sind werkseitig voreingestellt und können geändert werden. Das Ändern der Einstellungen kann über den Bootloader oder spezielle Register erfolgen.

EINSCHALTEN

Beim Einschalten blinkt die grüne LED auf der Oberseite des Compod[™] Gehäuses zweimal auf. Während dieser Zeit ist es möglich, den Bootloader aufzurufen (siehe Kapitel 7 über den Bootloader für weitere Informationen). Nach dem Blinken leuchtet die rote LED auf und zeigt damit die Initialisierungsphase an. Während dieser Zeit werden Daten vom Smart-Trak[®] abgerufen und im Speicher des Compod[™] abgelegt. Zu diesem Zeitpunkt ist keine Kommunikation über Modbus möglich.

Sobald alle Daten abgerufen sind, erlischt die rote LED und die grüne LED beginnt zu blinken, sobald sie Daten vom Gerät empfängt. Eine Kommunikation über Modbus ist jetzt möglich.

Sollte die Kommunikation mit dem Instrument aus irgendeinem Grund verloren gehen, wird der Compod[™] erneut versuchen, sie herzustellen. Während dieser Phase ist die Modbus-Schnittstelle nicht aktiv.

Die rote LED leuchtet jedes Mal auf, wenn eine Netzwerkmeldung mit dem korrekten ID-Code empfangen wird.

LED's zeigen die Aktivitäten des Compod™ an

DATENFORMAT VERSCHIEDENER REGISTER

- 32 Bit echt: IEEE 754 Fliesskomma, Low Word zuerst
- BCD-kodiert: hexadezimal-kodierte Dezimalwerte, z.B. 0x89 = dezimal 89
- 8 & 16 Bit int: Ganzzahlwerte ohne Vorzeichen
- 16 Bit ASCII: ASCII-kodierte Zeichen, High Word = 1. 0x4944 = "ID".

ÜBERSICHT DER MODBUS-REGISTER

PDU Adresse	Register	Beschreibung	Lesen/ Schreiben	Datentyp	Nr. Register
	Elektronische				
	0	Daten		1	1
\$00	40001	Tatsächlicher Durchfluss –	R	32 bits real	2
\$01	40002	Tatsächlicher Durchfluss -			
ΨŪΙ	40002	high word			
\$02	40003	Sollwert - low word	R/W	32 bits real	2
\$03	40004	Sollwert - high word			
\$04	40005	Totalisator3,4	R/W (Reset)	BCD codiert	4
\$05	40006	Totalisator1,2	R		
\$06	40007	Totalisator7,8	R		
\$07	40008	Totalisator5,6	R		
\$08 \$00	40009	Ventilleistung	R	16 bits int.	1
\$09 ¢04	40010	Analog CHU	R	16 bits int.	1
\$UA \$OP	40011		R P	16 bits int.	1
\$00 \$00	40012	Digitale Daten - NUT	R/W	16 bits int	1
\$0D	40013	Alarm-Status	R/W	16 bit int	1
ΨUD	40014	Einstellun	gen	10 511 111.	-
\$0E	40015	Werk f.s – low word	R	32 bits real	2
\$0F	40016	Werk f.s – high word			
\$10	40017	Benutzer f.s – low word	R/W	32 bits real	2
\$11	40018	Benutzer f.s – high word	•		
\$12	40019	Gaskalibrierwert – low word	R/W	32 bits real	2
\$13	40020	Gaskalibrierwert – high word			
\$14	40021	Trig1 Low – low word	R/W	32 bits real	2
\$15	40022	Trig1 Low – high word			
\$16	40023	Trig1 High – low word	R/W	32 bits real	2
\$17	40024	Trig1 High – high word			
\$18	40025	Trig2 Low – low word	R/W	32 bits real	2
\$19	40026	Trig2 Low – high word			
\$1A	40027	Trig2 High – low word	R/W	32 bits real	2
\$1B	40028	Trig2 High – high word			
\$1C	40029	Register Alarmsteuerung	R/W	16 bit int.	1
\$1D	40030	Auslöser-Quelle 1	R/W	16 bit int.	1
\$1E	40031	Auslöser-Quelle 2	R/W	16 bit int.	1
\$1F	40032	Einstellung d. Analogeingangs	R/W	8 bits int.	1
\$20	40033	Puls-Aus-Steuerung	R/W	16 bits int.	1
\$21	40034	Gas-Index	R/W	8 bits int.	1
\$22	40035	Ventilstellungs-Index	R/W	8 bits int.	1
\$23	40036	Index der Flusseinheit	R/W	8 bits int.	1
\$24	40037	Passwort	R/W	16 bits int.	1
\$25	40038	Eingangs-Sollwert-Index	R/W	8 bits int.	1
\$26	40039	Index der Analogausgabe	R/W	8 bits int.	1
	Statische Daten				
\$27	40040	Firmware-Rev. – low word	R	32 bits real	2

\$28	40041	Firmware-Rev. – high word			
\$29	40042	Gerätetyp	R	16 bits ASCII	1
\$2A	40043	Seriennummer – char 1,2	R	16 bits ASCII	4
\$2B	40044	Seriennummer – char 3,4			
\$2C	40045	Seriennummer – char 5,6			
\$2D	40046	Seriennummer – char 7,8			
\$2E	40047	Kennzeichen - char 1,2	R	16 bits ASCII	5
\$2F	40048	Kennzeichen - char 3,4			
\$30	40049	Kennzeichen - char 5,6			
\$31	40050	Kennzeichen - char 7,8			
\$32	40051	Kennzeichen - char 9,10			
\$33	40052	Gas 1 – char 1,2	R	16 bits ASCII	8
\$3A	40059	Gas 1 – char 15,16			
\$3B	40060	Gas 2 – char 1,2	R	16 bits ASCII	8
.	40007				
\$42	40067	Gas 2 – char 15,16			
Ş43	40068	Gas 3 – char 1,2	R	16 bits ASCII	8
\$1A	40075	Gas 2 - char 15 16			
\$4A \$4B	40075	Gas A = char 1.2	P	16 bits ASCII	Q
94D	40070		IX	10 DIUS ASCII	0
\$52	40083	Gas 4 – char 15,16			
\$53	40084	Gas 5 – char 1,2	R	16 bits ASCII	8
\$5A	40091	Gas 5 – char 15,16			
\$5B	40092	Gas 6 – char 1,2	R	16 bits ASCII	8
\$62	40099	Gas 6 – char 15,16			
\$63	40100	Gas 7 – char 1,2	R	16 bits ASCII	8
¢6A	40107	Cas 7 char 15 16			
ŞUA ÇED	40107	Gas 7 = Char 13,10	P	16 bits ASCII	0
ŞOB	40108		n.	10 DIUS ASCII	0
\$72	40115	Gas 8 – char 15.16			
\$73	40116	Gas 9 – char 1,2	R	16 bits ASCII	8
, -					-
\$7A	40123	Gas 9 – char 15,16			
\$7B	40124	Gas 10 – char 1,2	R	16 bits ASCII	8
\$82	40131	Gas 10 – char 15,16			
\$83	40132	Sensordaten	R	8 + 8 bit int.	1
\$84	40133	Einheit auf Null setzen	R/W (\$A5)	8 bits int.	1
\$85	40134	Einheit auf Werkseinstellung zurücksetzen	R/W (\$A5)	8 bits int.	1

SPEZIELLE MODBUS-EINRICHTUNGSREGISTER

PDU	Register	Beschreibung	Lesen/	Тур	Register Nr.
Address			Schreiben		
\$1003	44100	ID (1-247)	R/W	16 bit int.	1
\$1004	44101	Baudrate	R/W	16 bit int.	1
		1 = 4800, 2 = 9600			
		3 = 19K2, 4 = 38K4			
		5 = 57K6			
\$1005	44102	Parität	R/W	16 bit int.	1
		1=keine, 2=ungerade,			
		3=gerade			
\$1006	44103	TX-Verzögerung	R/W	16 bit int.	1
		(Millisekunden)			
\$1007	44104	Einheit zurücksetzen:	R/W	16 bit int.	1
		Wert aus dem Register			
		lesen und zurückschreiben.			
		Dadurch wird die Einheit			
		zurückgesetzt.			

REGISTER ERKLÄRT

Die Register sind in vier Gruppen unterteilt. Die erste Gruppe (40001 - 40014) repräsentiert die dynamischen Daten. Diese Gruppe ändert sich am meisten. Die zweite Gruppe (40015 - 40039) enthält die spezifischen Einstellungen aus dem Instrument und dem Compod[™]. Die dritte Gruppe enthält die statischen Daten der Instrumente. Die letzte Gruppe (44100 - 44104) enthält speziellen Funktionen zur Änderung der Modbus-Einstellungen, während sich das Gerät im Netzwerk befindet.

Registerbeschreibung

40001: Tatsächlicher Durchfluss

Der tatsächliche Durchfluss, wie er vom Instrument gemessen wird.

40003: Sollwert

Bei Verwendung eines Reglers wird der Sollwert angezeigt. Durch Überschreiben dieses Registers wird der Sollwert eingestellt. Wenn ein Sollwert eingegeben wird, der außerhalb des Skalenendwerts des Instruments liegt, wird der Sollwert automatisch auf den Skalenendwert geändert.

40005 – 40008: Totalisator

Der Totalisatorwert ist BCD-kodiert. Die ersten beiden Register sind der Wert links vom Dezimalpunkt. Die letzten beiden Register stellen den Wert hinter dem Dezimalpunkt dar.

Beispiel: 40005 = 0x0010 40006 = 0x1204 40007 = 0x1654 40008 = 0x4500 Total = 12040010. 45001654

40009: Ventilleistung

Wert, der die in dem Datenwert die eingespeiste Leistung darstellt (bei Verwendung eines Reglers). Der Wert liegt zwischen 0 und 3200 (4095 beim Spülen des Ventils).

40010 - 40011: Analoge Eingänge 1 & 2

Die Werte von den analogen Eingängen werden als Rohwerte zwischen 0 und 1023 dargestellt. Die Einstellungen der Analogeingänge bestimmen den Bereich.

40012: Digitale Eingänge

Dieser Wert spiegelt die ID-Bits auf P1 wieder (wahrer Wert, 0 = 0, 1 = 1). Die ID-Pins können als TTL-Eingänge verwendet werden, aber denken Sie daran, dass diese Pins während des Einschaltens als ID-Pins fungieren.

40013: Digitale Ausgänge

Das Schreiben in dieses Register setzt die beiden verfügbaren digitalen Ausgänge (wenn sie nicht dem Alarmsystem zugeordnet sind). Digitalausgang 1 ist mit Bit 0 verknüpft und Digitalausgang 1 ist mit Bit 1 im Wert verknüpft.

40014: Alarm-Status

Statusanzeige für die Alarme: Siehe Kapitel über das Alarmsystem für weitere Informationen.

40015: Werkseitiger Skalenendwert

Werkseitiger Skalenendwert des Instruments

40017: Benutzer Skalenendwert

Der Benutzerendwert der Skalenendwertskala ermöglicht es Ihnen, das Instrument neu auszurichten. Jeder Wert zwischen 50% und 100% des werkseitigen Skalenendwerts ist zulässig. Der neue Wert definiert auch die Analogausgänge des Instruments neu (falls verwendet). Die 20mA/5 Vdc stellen den neuen Skalenendwert dar.

40019: Gaskalibrierbereich

Mit dem Gaskalibrierbereichswert können Sie den Skalenendwert jedes verfügbaren Gases neu einstellen.

40021: Auslösepunkt unterer Alarm 1

Auslösewert für den Tiefpunkt: Siehe Kapitel über das Alarmsystem für weitere Informationen.

40023: Auslösepunkt oberer Alarm 1

Auslösewert für den Hochpunkt: Siehe Kapitel über das Alarmsystem für weitere Informationen.

40025: Auslösepunkt unterer Alarm 2

Auslösewert für den Tiefpunkt: Siehe Kapitel über das Alarmsystem für weitere Informationen.

40027: Auslösepunkt oberer Alarm 2

Auslösewert für den Hochpunkt: Siehe Kapitel über das Alarmsystem für weitere Informationen.

40029: Register Alarmsteuerung

Siehe Kapitel über das Alarmsystem für weitere Informationen.

40030: Auslösequelle Alarm 1

Auslösequelle für Alarm 1: Siehe Kapitel über das Alarmsystem für weitere Informationen.

40031: Auslösequelle Alarm 2

Auslösequelle für Alarm 2: Siehe Kapitel über das Alarmsystem für weitere Informationen.

40032: Analoge Eingangseinstellungen

Dieses Register steuert die Systematik, wie sich die analogen Eingänge verhalten. Die folgende Tabelle zeigt die möglichen Einstellungen.

Bit	Funktion		
	Analoger Eingang 1		
0	Eingabe-Multiplikator, 0 = 1x, 1 = 0.5x		
1	Eingabe-Modus, 0 = Spannung, 1 = aktuell		
	Analoger Eingang 2		
2	Eingabe-Multiplikator, 0 = 1x, 1 = 0.5x		
3	Eingabe-Modus, 0 = Spannung, 1 = aktuell		
	Allgemeine Einstellungen		
7	Referenz, 0 = 2.56V, 1 = 5V		

Wenn der Impulsausgang aktiviert ist, wird Analogeingang 2 deaktiviert.

40033: Puls-Aus-Steuerung

Wenn aktiviert, (Wert ungleich Null), erzeugt der Impulsausgang jedes Mal einen Impuls, wenn der Totalisator um einen vordefinierten Wert inkrementiert wird. Das Impulsausgangs-Steuerregister ist in zwei Teile unterteilt. Das niederwertige Byte des Wortes repräsentiert den Inkrementwert N und das höherwertige Byte die Impulsbreite.

Beispieleinstellung N:

Angenommen, der Fluss des Instruments ist auf SLPM eingestellt. Wenn N = 10, dann wird jedes Mal ein Impuls erzeugt, wenn der Totalisator um mindestens 10 SL inkrementiert wird. Wenn N auf 1 eingestellt ist, wird jedes Mal, wenn der Totalisator um mindestens 1 SL erhöht wird, ein Impuls erzeugt.

Impulsbreite:

Die Pulsbreite kann zwischen 2,5 und 500 Millisekunden eingestellt werden. Beachten Sie, dass das Zählwerk bei hohen Durchflüssen schnell inkrementiert, und wenn N auf einen niedrigen Wert eingestellt ist, muss die Impulsbreite mit Vorsicht gewählt werden.

Beispiel:

Der Durchfluss ist an einem gegebenen Punkt gleich 500 SLPM und N = 1. Der Totalisator wird schnell mit einer Rate von 500/60 = 8,333 SL pro Sekunde inkrementiert. Dies bedeutet, dass mindestens 8 Impulse pro Sekunde erzeugt werden (N = 1). Wenn die Impulsbreite auf 500 msec (2 Impulse pro Sekunde) eingestellt ist, gehen Impulse verloren. Die empfohlene Pulsbreite beträgt 1/(8+1) = 110 msec. Wenn der an den Impulsausgang angeschlossene Zähler keine schnellen Impulse verarbeiten kann, muss der N-Wert erhöht werden.

40034: Gas-Index

Der Wert zeigt an, welches Gas am Gerät ausgewählt ist. Der Wert kann zwischen 1 und 10 liegen.

40035: Ventilstellungs-Index

Der Ventilstellungsindex ist der Modus, in dem das Ventil des Reglers arbeitet. Die Tabelle zeigt die verfügbaren Werte:

Wert	Modus
1	Automatisch
2	Geschlossen
3	Offen
	(spülen)

40036: Index der Flusseinheit

Der Wert gibt die ausgewählte Durchflusseinheit auf dem Instrument an. Die Tabelle zeigt die verfügbaren Werte an:

Wert	Einheit
1	Scc/s
2	Scc/m
3	Scc/h
4	Ncc/s
5	Ncc/m
6	Ncc/h
7	SCF/s
8	SCF/m
9	SCF/h
10	NM3/s
11	NM3/m
12	NM3/h
13	SM3/s
14	SM3/m
15	SM3/h
16	SI/s
17	SI/m
18	Sl/h
19	NI/s
20	NI/m
21	NI/h
22	g/s
23	g/m
24	g/h
25	Kg/s
26	Kg/m
27	Kg/h
28	Lb/s
29	Lb/m
30	Lb/h

40037: Passwort

Aktuell eingestelltes Passwort im Instrument. Dieses Passwort hat keinen Einfluss auf den Compod™.

40038: Eingangs-Sollwert-Index

Der Wert gibt die Quelle für den Sollwert an. Die Tabelle zeigt die verfügbaren Werte an:

Wert	Quelle
1	RS232
2	0 – 5 V
3	0 – 10 V
4	1 – 5 V
5	4 – 20 mA
6	0 – 20 mA (Smart-Trak® 2 oder höher)

WÄHLEN SIE RS232 ALS QUELLE, WENN DER SOLLWERT ÜBER DAS NETZWERK GEREGELT WERDEN MUSS.

40039: Index der Analogausgabe

Der Analogausgangsindex ist der Wert, der den aktuell ausgewählten Analogausgang des Geräts angibt. Die Tabelle zeigt die verfügbaren Werte:

Wert	Ausgabe-Option
1	0 – 5 Vdc / 4 – 20 mA
2	0 – 10 Vdc / 4 – 20 mA
3	1 – 5 Vdc / 4 – 20 mA
4	0 – 5 Vdc / 0 – 20 mA (Smart-Trak [®] 2 oder höher)
5	0 – 10 Vdc / 0 – 20 mA (Smart-Trak [®] 2 oder höher)
6	1 – 5 Vdc / 0 – 20 mA (Smart-Trak [®] 2 oder höher)

40040: Firmware-Revisionsnummer

Firmware-Revisionsnummer des Geräts

40042: Gerätetyp

Auf dem Compod[™] sind zwei Zeichen für die Art des Instruments angegeben. Das erste Zeichen (hohes Byte) gibt die Versionsnummer des Smart-Trak[®] an (1, 2 oder andere). Das zweite Zeichen (niederwertiges Byte) gibt an, ob ein Messer "M" oder ein Regler "C" angeschlossen ist.

Beispiel: '1C' = Smart-Trak® 1 - Regler, '2M' = Smart-Trak® 2 - Messer

40043 - 40046: Seriennummer

Seriennummer des Instruments, dargestellt als eine achtstellige Zeichenfolge.

40047 - 40051: Kennzeichen

Kennzeichen- (oder Label-) Bezeichnung, die in dem Compod[™] gesetzt wird. Die Tag-Nr. kann nur im Bootloader-Modus gesetzt werden und kann z.B. zur Identifizierung des Instruments oder seiner Position verwendet werden.

40052 - 40059: Gas Name 1 40060 - 40067: Gas Name 2 40068 - 40075: Gas Name 3 40076 - 40083: Gas Name 4 40084 - 40091: Gas Name 5 40092 - 40099: Gas Name 6 40100 - 40107: Gas Name 7 40108 - 40115: Gas Name 8 40116 - 40123: Gas Name 9

Im Instrument vorhandene Gastabellen.

40132: Sensordaten

Sensordaten vom Instrument. das High-Byte zeigt die Brückenspannung und das Low-Byte den Brückenstrom an.

40133: Einheit auf Null setzen

Durch das Beschreiben dieses Registers mit dem Wert 0xA5 wird das Gerät auf Null gesetzt. Weitere Informationen finden Sie im Smart-Trak[®] Handbuch.

40134: Einheit auf Werkseinstellung zurücksetzen

Durch das Beschreiben dieses Registers mit dem Wert 0xA5 werden alle benutzerdefinierten Einstellungen auf die Werkseinstellungen zurückgesetzt. Der Nullwert und die Gaskalibrierwerte werden gelöscht.

SPEZIELLE MODBUS-EINRICHTUNGSREGISTER

Die Modbus-Einstellungen für den Compod[™] können geändert werden, während er mit dem Netzwerk verbunden ist. Über spezielle Register ist es möglich, die Einstellungen zu ändern. Die Einstellungen können geändert werden, werden aber erst nach einem speziellen Schreibvorgang aktiv.

44100: ID

Der ID-Code, wie er im Speicher angelegt ist, wird angezeigt. Der über die ID-Pins an P1 eingestellte ID-Code wird nicht angezeigt. Jeder Wert zwischen 1 und 255 kann verwendet werden.

44101: Baudrate

Wert	Baudrate
1	4800
2	9600
3	19K2
4	38K4
5	57K6

44102: Parität

Wert	Parität
1	Keine
2	Ungerade
3	Gerade

44103: TX-Verzögerung

Der Wert in diesem Register weist den Compod[™] an, eine Anzahl von Millisekunden zu warten, bevor mit der Übertragung der Antwort an den Master begonnen wird.

Verzögerungszeit = Wert x 1ms

44104: Einheit zurücksetzen

Das Zurückschreiben des aus diesem Register gelesenen Wertes löst zwei Ereignisse aus:

1. Die eingegebenen Werte für den ID-Code, die Baudrate, die Parität und die TX-Verzögerung werden im Speicher abgelegt (wodurch sie permanent sind).

2. Der Compod[™] führt einen Power-Up-Reset durch und liest die neuen Einstellungen

Die neuen Einstellungen sind jetzt aktiv. Die neuen Einstellungen werden nicht gespeichert, es sei denn, der korrekte Wert wird in dieses Register geschrieben. Wenn die Einstellungen geändert werden und ein manuelles Reset durchgeführt wird, werden die alten Einstellungen verwendet.

KAPITEL 5: ALARM SYSTEM

Der Compod[™] verfügt über ein Alarmsystem, das zwei Register überwachen und einen Alarm auslösen kann, wenn die Register einen vordefinierten Wert überschreiten. Der Alarm kann an einen digitalen Ausgang geleitet werden.

Das Alarmsystem kann auch die vom Ventil in Reglern verbrauchte Leistung überwachen. Wenn das Ventil die maximale Leistung erreicht, erzeugt es Wärme. Unter normalen Betriebsbedingungen wird es durch den Durchfluss gekühlt. Wenn kein Durchfluss vorhanden ist und das Ventil mit maximaler Leistung läuft, wird es sehr heiß und kann auf lange Sicht beschädigt werden. Das Alarmsystem kann das Ventil abschalten, wenn es mit maximaler Leistung läuft.

ALARMPRINZIP

Das Alarmprinzip basiert auf dem Vergleichs eines Wertes. Wenn der Wert größer oder kleiner wird, als ein vordefinierter Wert, wird ein Alarm ausgelöst.

(Auslösepriorität höher eingestellt)

Wenn der Wert höher als der Auslösepunkt (hoch) wird, wird der Alarm aktiviert. Wenn der Wert unter den unteren Auslösepunkt fällt, wird die Alarmbedingung gelöscht.

ALARMSTEUERUNG

Es gibt sechs Register, die das Alarmsystem steuern. Es gibt ein Kontrollregister, in dem das Verhalten des Systems definiert wird. Ein Statusregister gibt einen Überblick über den Alarmzustand. Jeder Alarmkanal verfügt über ein eigenes Auslösepegelregister.

ALARM-KONTROLLREGISTER

Das Alarm-Kontrollregister (40029) legt das Verhalten der beiden Alarmkanäle und einiger anderer Alarme fest.

Übersicht:

Bit	Funktion
	Alarm1
0	Alarm aktivieren (0 = aus / 1 = ein)
	Wenn nicht eingestellt, funktioniert der Alarm nicht.
1	Ausgang aktivieren (0 = aus / 1 = ein) Bei der Einstellung wird der Digitalausgang1 ausgelöst, um den Alarmzustand widerzuspiegeln. Das Setzen dieses Bits deaktiviert die Ausgangsfunktion.
2	Auslöser-Polarität (0 = tief / 1 = hoch) Wählen Sie, ob der Alarm ausgelöst werden soll, wenn der Istwert höher oder niedriger ist als der Auslösewert (Auslösequelle)
3	Alarm-Sperrmodus (0 = deaktiviert / 1 = aktiviert) Wenn er gelöscht ist, wird das Alarmstatusbit entsprechend dem Alarmzustand umgeschaltet. Wenn es gesetzt ist, wird das Alarmstatusbit (und der mögliche Ausgang) gesperrt, sobald ein Alarm aufgetreten ist. Durch Löschen des Statusbits wird der Alarmzustand gelöscht.
	Alarm2
4	Alarm aktivieren (0 = aus / 1 = ein)
	Wenn nicht eingestellt, funktioniert der Alarm nicht.
5	Ausgang aktivieren (0 = aus / 1 = ein) Bei der Einstellung wird der digitale Ausgang2 ausgelöst, um den Alarmzustand widerzuspiegeln. Durch Setzen dieses Bits wird die Ausgangsfunktion deaktiviert.
6	Auslöser-Polarität (0 = tief / 1 = hoch) Wählen Sie, ob der Alarm ausgelöst werden soll, wenn der Istwert höher oder niedriger ist als der Auslösewert (Auslösequelle)
7	Alarm-Sperrmodus (0 = deaktiviert / 1 = aktiviert) Wenn er gelöscht ist, wird das Alarmstatusbit entsprechend dem Alarmzustand umgeschaltet. Wenn es gesetzt ist, wird das Alarmstatusbit (und der mögliche Ausgang) gesperrt, sobald ein Alarm aufgetreten ist. Durch Löschen des Statusbits wird der Alarmzustand gelöscht.
	Verschiedene
8	Ventil-Leistungsalarm (0 = aktiviert / 1 = deaktiviert) Wenn aktiviert, wird der Sollwert nach 5 Minuten auf Null gesetzt, wenn die Ventilleistung die ganze Zeit bei 3200 bleibt.
9	Sensorausfall-Alarm (0 = aktiviert / 1 = deaktiviert) Wenn der Sensor nicht funktioniert, wird ein Alarm ausgelöst (nur Smart-Trak®2!)
	Alarm1 - zusätzliche Option (überschreibt andere Einstellungen)
10	Sollwert auf Null setzen (0 = deaktiviert / 1 = aktiviert) - höchste Priorität
11	Ventilmodus auf Schließen eingestellt (kehrt zum gegenwärtigen Ventilmodus zurück, wenn der Alarm gelöscht wird) (0 = deaktiviert / 1 = aktiviert)

Wenn der Alarm-Sperrmodus aktiviert ist, bleibt der Alarmausgang auch dann aktiv, wenn der Alarmzustand gelöscht wurde. Der Alarmausgang kann nur durch Schreiben einer Null in das Statusbit im Alarmstatusregister gelöscht werden.

Das Auslöseprioritätsbit bestimmt, ob ein Alarm ausgelöst wird, wenn der überwachte Wert höher oder niedriger als der Auslösewert ist. Wird es auf Eins gesetzt, wird der Alarm ausgelöst, wenn der Wert höher als der Auslösewert wird.

DIE AKTIVIERUNG DES DIGITALEN AUSGANGS DEAKTIVIERT DAS DIGITALE DATENAUSGANGSREGISTER. WENN DER DIGITALE AUSGANG IM ALARM DEAKTIVIERT WIRD, WIRD DER AUSGANG AUF DEN IM REGISTER FÜR DEN DIGITALEN DATENAUSGANG VORHANDENEN WERT GESETZT.

Für Alarm 1 stehen zwei zusätzliche Optionen zur Verfügung (Bit 10 & 11). Die gewählte Aktion wird ausgeführt, sobald ein Alarmzustand erkannt wird.

AUSLÖSER-QUELLE

Jeder Alarmkanal hat seine eigene Auslösequelle. Die Quelle ist ein Modbus-Register, dessen Inhalt überwacht wird. Die folgende Tabelle gibt einen Überblick über alle Register, die verwendet werden können:

Modbus	Beschreibung
Register	
40001	Aktueller Fluss (Ist-Fluss?)
40003	Sollwert
40005	Totalisator linke Seite des Dezimalpunkts
40007	Totalisator rechte Seite des Dezimalpunkts
40009	Ventilleistung
40010	Analoger Kanal 1
40011	Analoger Kanal 12
40012	Digitaler Dateneingang
40013	Digitaler Datenausgang
40015	Werkseitiger Skalenendwert
40017	Benutzer Skalenendwert
40019	Gaskalibrierbereich
40032	Analoge Eingangseinstellungen
40033	Puls-Aus-Steuerung
40034	Gas-Index
40035	Valve position index
40036	Ventilstellungs-Index
40037	Passwort
40038	Eingangs-Sollwert-Index
40039	Index der Analogausgabe

Der zu überwachende Registerwert kann in eines der beiden Triggerquellenregister (40030/40031) eingegeben werden.

AUSLÖSEPUNKT (LEVEL)

Geben Sie den Auslösepunkt ein, bei dem der Alarm reagieren muss. Der Alarm wird aktiv, wenn der Auslösewert überschritten wird (nicht, wenn er gleich oder kleiner ist). Der eingegebene Wert wird in einen Datentyp konvertiert, der zur Auslösequelle gehört.

ALARM-STATUS-REGISTER

Das Alarmstatusregister zeigt den aktuellen Status des Alarms an.

Bit	Status
0	Alarm 1 (0 = kein Alarm, 1 = Alarm)
1	Alarm 2 (0 = kein Alarm, 1 = Alarm)
2	Ventilleistung (0 = kein Alarm, 1 = Alarm)
3	Sensorausfall - nur ST2 (0 = kein Alarm, 1 = Alarm)

Im Sperrmodus kann das Statusbit für den Alarm gelöscht werden, indem das Bit auf Null gesetzt wird. Das Ventilleistungs-Bit wird ebenfalls gelöscht, indem es mit einer Null beschrieben wird.

Das Sensorausfallbit kann nicht gelöscht werden, indem es auf Null gesetzt wird.

BEISPIELE

ALARM FÜR ZU HOHEN UND ZU NIEDRIGEN DURCHFLUSS

Ziel:

Ein Alarm muss ausgelöst werden, wenn der Durchfluss außerhalb eines festgelegten Bereichs liegt. Wenn der Durchfluss zu hoch wird, wird Alarm 1 ausgelöst, und wenn der Durchfluss zu niedrig wird, wird Alarm 2 ausgelöst. Wenn der Durchfluss wieder innerhalb des Bereichs liegt, werden die Alarme gelöscht.

Der Durchflussbereich liegt zwischen 50 und 180 NLPH. Die Totzone wird auf 10 NLPH eingestellt. Register-Einstellungen:

Auslösequelle für Alarm 1/2 = 40001 Auslösepunkt Hochalarm 1 = 180 Auslösepunkt Tiefalarm 1 = 170 Auslösepunkt Hochalarm 2 = 60 Auslösepunkt Tiefalarm 2 = 50 Auslösepunkt Polarität Alarm 1 = 1

Polaritätsalarm auslösen 2 = 0

Alarm 1 & 2 Freigabe = 1

Wenn nun der Fluss unter oder über die Auslösepunkte geht, zeigt das Alarmstatusregister einen Alarm an. Wenn eine externe Anzeige erforderlich ist, können die digitalen Ausgänge mit den Alarmen verknüpft werden (Freigabeausgang = 1).

ABSCHALTEN DES FLUSSES DURCH EXTERNEN DRUCKKNOPF

Ziel:

Wenn ein externer Druckknopf gedrückt wird, soll der Regler den Durchfluss auf Null setzen.

Einrichtung:

Beachten Sie, wie der ID-Auswahl-Pin als digitaler Eingang verwendet wird. Jeder der vier ID-Pins kann als Eingang verwendet werden (wenn er nicht geerdet ist, um einen ID-Code einzustellen).

Einstellungen registrieren:

Auslösequelle für Alarm 1 = 40012 Auslösepunkt Hochalarm 1 = 0 Auslösepunkt Tiefalarm 1 = 0 Auslösepunkt Polarität Alarm 1 = 1 Alarm 1 'Sollwert auf Null' = 1 (Bit 10 im Alarm-Kontrollregister)

Wenn nun die Taste gedrückt wird, wird der Sollwert des Reglers auf Null gesetzt.

TANK MIT GAS FÜLLEN, UM DAS DRUCKNIVEAU ZU HALTEN

Ziel:

Füllen Sie einen Gastank, um den Tank auf einem Mindestdruckniveau zu halten. Einrichtung: Der Druckaufnehmer ist an COM2 - Pin3 (Analogeingang) und COM2 - Pin 7 (Masse) angeschlossen.

Der Tank hat einen Druckwandler, der ein Signal von 4-20mA liefert, das einen Druckbereich von 0-10 barg darstellt. Der Analogeingang liest einen Rohwert ab. Dies bedeutet, dass 0 mA als '0' und 20 mA als ein Wert um '1023' gelesen werden. Angenommen, der Druck soll bei 8 barg gehalten werden. Das würde bedeuten, dass der Analogeingang einen Wert von (8/10)*1023 = 818 anzeigen würde.

Der Alarm wird ausgelöst, wenn der Druck 8 Barg (818) erreicht. Der Alarm wird gelöscht, wenn der Druck auf 7 Barg (716) fällt.

Einstellungen speichern:

Auslösequelle für Alarm 1 = 40010 Auslösepunkt Hochalarm 1 = 818 Auslösepunkt Tiefalarm 1 = 716 Auslösepunkt Polarität Alarm 1 = 1 Analogeingangseinstellungen = 130 (5V-Sollwert, Kanal 1 als Stromeingang)

Geben Sie einen Sollwert an, um den Fluss zu starten. Der Druck im Tank beginnt zu steigen und sobald er über 8 barg steigt (Analogeingang zeigt etwa 819 oder höher an), wird ein Alarm ausgelöst, der das Ventil des Reglers schließt. Wenn der Druck unter 7 barg fällt, wird der Alarm gelöscht und das Ventil des Reglers freigegeben. Der Regler startet den Durchfluss erneut und füllt den Tank.

UM DEN AUSLÖSEPUNKT ZU BESTIMMEN, IST ES MÖGLICH, DEN WERT DES ANALOGKANALS ZU BEOBACHTEN, BIS DER GEWÜNSCHTE DRUCK ERREICHT IST. Der Compod[™] kann mit einem Display ausgestattet werden, das Informationen über das Gerät anzeigt.

Über die Modustaste rechts unten können Sie durch eine Reihe von Bildschirmen mit Informationen über das Gerät schalten.

(Modus-Taste)

Bei jedem Drücken der Taste wechselt der Bildschirm zur Anzeige verschiedener Informationen.

EINLEITUNG

Dieses Kapitel beschreibt, wie der Bootloader verwendet wird. Der Bootloader ermöglicht es, mit einem einfachen Terminalprogramm und einer seriellen Verbindung Anwendungen einzurichten und Firmware herunterzuladen.

ERSTE SCHRITTE

Um den Bootloader verwenden zu können, wird ein PC benötigt, der mit einer RS485-Schnittstelle oder einem externen Konverter ausgestattet ist, der an den RS232-Port angeschlossen wird.

Verbinden Sie die RS485-Schnittstelle des Compod[™] mit der RS485-Schnittstelle des PC. Starten Sie auf dem PC ein einfaches Terminalprogramm wie HyperTerminal.

Starten Sie HyperTerminal aus Windows und wählen Sie den Com-Port, an den die RS485-Schnittstelle angeschlossen ist. Verwenden Sie die folgenden Einstellungen:

Baudrate	9600
Anzahl der Bits	8
Parität :	Ν
Stoppbits	1

Der Bootloader ist nur während den ersten 2 Sekunden nach einem Einschalten oder Reset aktiv. Während des Einschaltens (oder Resets) blinkt diegrüne LED zweimal, bevor die Anwendung ausgeführt wird. Um den Bootloader aufzurufen, folgen Sie den nächsten Schritten:

1. Schalten Sie das Gerät ein

2. Drücken Sie in HyperTerminal innerhalb von 2 Sekunden nach dem Einschalten die Eingabetaste (jede andere Taste beendet den Bootloader und startet die Anwendung)

Wenn der Bootloader erfolgreich aktiviert wurde, leuchtet die grüne LED weiter. Das folgende Menü wird auf dem Bildschirm angezeigt:

Es werden die Version des Bootloaders und drei Optionen angezeigt. Durch Drücken der Taste "1", "2" oder "3" wird eine Option ausgewählt. HINWEIS: Dieser Schritt ist normalerweise nicht erforderlich. Die Firmware ist werkseitig geladen. Fahren Sie mit dem nächsten Schritt fort.

FIRMWARE LADEN (NORMALERWEISE NICHT ERFORDERLICH)

Drücken Sie "1", um die Firmware auf das Gerät herunterzuladen. Der folgende Bildschirm wird angezeigt:

Es wird eine Frage gestellt, um fortzufahren. Drücken Sie die Taste "Y" oder "y", um fortzufahren. Drücken Sie die Taste "N" oder "n", um abzubrechen. Beim Fortfahren wird der folgende Bildschirm angezeigt:

Der Bildschirm füllt sich mit dem Zeichen "§", das anzeigt, dass die XMODEM-Übertragung gestartet werden kann. Drücken Sie die "ESC"-Taste, um abzubrechen.

Wählen Sie aus dem Menü "Übertragung" die Option "Datei senden".

Es wird ein neuer Bildschirm angezeigt, in dem die zu übertragende Datei angefordert wird:

4	Bootloader - HyperTerminal
F	File Edit View Call Transfer Help
[l 🛩 📨 🕉 🗈 🎦 🖆
	Boot 1.0 1)Load Firmware 2)Setup Firmware 3)Quit >1 >Pre you sure V/N2y Send File
	Start XMODEM(ESC to ab Folder: H:\Engineering\Projects\MODBUS Filename: Protocol: Xmodem Send Close Cancel

Verwenden Sie die Schaltfläche "Durchsuchen", um die herunterzuladende Datei auszuwählen. Nur Dateien mit der Erweiterung ".hex" können auf das Gerät heruntergeladen werden. Stellen Sie auch sicher, dass das "Xmodem"-Protokoll ausgewählt ist. Wenn die Datei ausgewählt ist, drücken Sie die Schaltfläche "Senden". Der Übertragungsbildschirm wird eingeblendet, und der Status des Datei-Downloads kann überwacht werden. Während des Herunterladens ist die grüne LED aus und die rote LED leuchtet.

Wenn der Download abgebrochen werden muss, drücken Sie einfach die Taste "Abbrechen" und dann die Taste "Esc", um zum Boot-Menü zurückzukehren.

WENN DER DOWNLOAD EINMAL BEGONNEN HAT, IST ES NICHT MEHR MÖGLICH, IHN ZU STOPPEN. DIES HAT DEN VERLUST DER AKTUELLEN ANWENDUNG ZUR FOLGE. Der Download ist in Funktion:

4	Bootloader - HyperTerminal		
Ī			
ſ	Boot 1.0 1)Load Firmware		
	3)Quit	Xmodem file send for Bootloader Sending: H:\Engineering\Projects\MDDBUS development\Software\100 Series\M	
	>1 >Are you sure Y/N?y >Start XMODEM(ESC t	Packet: 32 Error checking: Checksum	888
	22222222222222222222222222222222222222	Retries: 0 Total retries: 0	555
	22222222222222222222222222222222222222	Last error:	888 888 888
	222222222222222222222222222222222222222	File: 4K of 14K	555
	555555555555555555555555555555555555555	Elapsed: 00:00:06 Remaining: 00:00:18 Throughput: 576 cps	ŀ
		Cancel Cps/bps	

Wenn das Herunterladen beendet ist, wird der Startbildschirm erneut angezeigt, der drei Optionen bietet.

FIRMWARE EINRICHTEN

Diese Option dient zum Einrichten der Firmware im Gerät. Wenn Sie die Taste "2" drücken, wird der folgende Bildschirm angezeigt:

Die Version der Firmware wird angezeigt, gefolgt von der ersten Option, die eingestellt werden kann. Sie zeigt auch den aktuell gewählten Wert und welche Werte eingegeben werden können.

In diesem obigen Beispiel kann der ID-Code der Einheit zwischen 1-247 eingestellt werden, die aktuelle Einstellung ist 1.

Durch Drücken der Taste "C" oder "c" wird ein neuer Wert abgefragt. Geben Sie einen neuen Wert ein und drücken Sie die Taste "Enter". Der neue Wert wird gespeichert und die nächste Option wird präsentiert (falls verfügbar). Daten, die eingegeben werden können, müssen mit dem dargestellten Typ übereinstimmen. Im obigen Beispiel können also nur Zahlen eingegeben werden. Zeichen werden ignoriert. Auch die Grösse der Eingabe wird in Abhängigkeit von der maximal erlaubten Grösse begrenzt.

Wenn alle Optionen angezeigt wurden, wird wieder das Standard-Startmenü angezeigt. Welche Optionen angezeigt werden, hängt von der Firmware ab.

WÄHREND DER EINGABE EINES NEUEN WERTES KANN DIE "BACKSPACE"-TASTE VERWENDET WERDEN, UM EINGEGEBENE WERTE ZU LÖSCHEN.

ES WIRD EMPFOHLEN, NUR WERTE EINZUGEBEN, DIE ZWISCHEN DEN KLAMMERN ANGEZEIGT WERDEN. ES KÖNNEN AUCH ANDERE WERTE EINGEGEBEN WERDEN, DIE JEDOCH DAZU FÜHREN KÖNNEN, DASS DAS GERÄT NICHT KORREKT FUNKTIONIERT.

BEENDEN

Mit dieser Option wird der Bootloader beendet und die Anwendung gestartet.

FEHLERSUCHE

Problem	Lösung	
Während der Übertragung der Firmware ist das Herunterladen angehalten worden und es passiert nichts mehr. (oder eine Fehlermeldung erscheint) Beim Versuch der Dateneingabe ist die Länge begrenzt. Es sind keine weiteren Daten zulässig.	Setzen Sie das Gerät zurück und versuchen Sie es erneut. Stellen Sie sicher, dass nur für das Gerät vorgesehene .hex-Dateien ausgewählt sind. Für jede Option sind der Datentyp und die Länge vordefiniert. Wenn Daten nicht mehr akzeptiert werden, ist das Maximum erreicht. Es ist auch nicht möglich, Zeichen einzugeben,	
	wenn Zahlen erwartet werden (und umgekehrt).	
Die Zeichen auf dem Bildschirm sind alle durcheinander	Überprüfen Sie die Kommunikationseinstellungen. Sie	
Das Gerät gibt den Bootloader nicht ein, obwohl die Eingabetaste innerhalb von 2	Versuchen Sie, die Leitungen "A" und "B" der RS485-Verbindung zu vertauschen und	
Sekunden nach dem Start gedrückt wird	versuchen Sie es erneut	

ANHANG A: COMPOD[™] ANWENDUNGSHANDBUCH

Bei der Anwendung Compod™ handelt es sich um ein Software-Tool, mit dem der Benutzer auf die verschiedenen Funktionen von Compod™ zugreifen und diese steuern kann. Die Software ermöglicht den Zugang zu Folgendem:

- Flow data
- Alarme
- Totalisator
- Impulsausgang
- Analoge Eingänge
- Smart-Trak®-Einstellungen
- Digitale Ausgänge

SYSTEMANFORDERUNGEN UND SOFTWARE-INSTALLATION

Die Anwendungssoftware Compod[™] von Vögtlin ist so konzipiert, dass sie auf Ihrem Computer mit den folgenden Mindestsystemanforderungen läuft:

- Windows 2000 oder besser
- 256 MB RAM, empfohlen 1 GB; 2 GB Festplattenspeicher
- RS-232-Anschluss
- Bildschirmauflösung von 1024x768 (Farbbildschirm empfohlen)

Windows[™] Software Installation

Die Smart Interface-Software und die zugehörigen Dateien werden auf CD-ROM zur Verfügung gestellt oder können von der Website heruntergeladen werden. Der Installationsprozess ist einfach und weitgehend automatisiert.

- 1. Suchen Sie die Einrichtung der Anwendung Compod[™] und führen Sie sie aus.
- 2. Folgen Sie den Anweisungen auf dem Bildschirm für die Software-Installation

ERSTE SCHRITTE

Bevor Sie die Software starten, schließen Sie den mit einem Compod™ ausgestatteten Smart-Trak® an Ihren Computer an.

Wenn alles angeschlossen ist, schalten Sie das Gerät ein.

EINSCHALTEN

Beim Einschalten blinkt die grüne LED auf der Oberseite des Compod[™] Gehäuses zweimal auf. Nach dem Blinken leuchtet die rote LED auf und zeigt damit die Initialisierungsphase an. Während dieser Zeit werden Daten vom Smart-Trak[®] abgerufen und im Speicher vom Compod[™] gespeichert. In dieser Phase ist keine Kommunikation möglich.

Sobald alle Daten abgerufen sind, erlischt die rote LED und die grüne LED beginnt zu blinken, sobald es Daten vom Gerät empfängt. Der Compod™ ist bereit zur Kommunikation.

Sollte die Kommunikation mit dem Instrument aus irgendeinem Grund verloren gehen, wird der Compod[™] erneut versuchen, die Kommunikation herzustellen. Während dieser Phase ist die Schnittstelle nicht aktiv.

Die rote LED leuchtet jedes Mal auf, wenn eine Netzwerkmeldung mit dem korrekten ID-Code empfangen wird.

LED's zeigen die Aktivitäten des Compod

Starten Sie die Compod-Anwendung durch Doppelklicken auf ihr Symbol oder über das Startmenü des PCs.

Die Anwendung startet mit dem folgenden Bildschirm:

Star Compod Application				
status Status Activity				
Serial settings				
Einrichtung der Kommunikationm				
Parity 👙 Even				
Time out 1000 ms				
Adjust the serial settings to match the setup of the device being used				
Start communication				
Firmware 0 Alarm1 Alarm2 Valve alarm Sensor failure Serial Tag				

Beginnen Sie mit der Auswahl des richtigen COM-Anschlusses. Überprüfen Sie die anderen Einstellungen (siehe Benutzerhandbuch für weitere Informationen über die Einstellungen und deren Änderung). Wenn die Software mit einem speziellen Kabel geliefert wird und sich die Einstellungen vom Compod[™] nicht geändert haben (Werkseinstellungen), dann sind die obigen Einstellungen korrekt.

Drücken Sie die Schaltfläche "Kommunikation starten". Wenn alle Einstellungen korrekt sind und das Gerät korrekt verkabelt ist, beginnt das Programm, Daten vom Gerät zu sammeln, und die Statusleuchte sollte blinken. Auf dem Bildschirm sollte ein rotes Licht blinken, um anzuzeigen, dass Nachrichten empfangen werden.

Wenn nichts passiert, lesen Sie den Abschnitt Fehlerbehebung.

HAUPTPROGRAMM

Wenn die Kommunikation läuft, werden die Registerkarten sichtbar, und es kann eine Auswahl getroffen werden.

GERÄTETABELLE

Im Fenster der Geräteregisterkarte werden alle Daten im Zusammenhang mit dem Smart Trak angezeigt:

Die folgenden Funktionen sind nicht verfügbar, wenn Compod™ an einen Smart-Trak® 1 angeschlossen ist:

- Null-Einheit
- FR (auf Werkseinstellung)
- Gasspanne des ausgewählten Gases
- Alarm bei Sensorausfall

Bei Verwendung des Compod[™] mit einem Messgerät sind die Funktionen zur Kontrolle des Durchflusses deaktiviert.

REGISTERKARTE ALARMSYSTEM

Die Registerkarte Alarm steuert das Alarmsystem. Hier können Einstellungen geändert werden. Beim Ändern einer Einstellung beginnt die Schaltfläche "Write settings" gelb zu blinken. Solange dieser Knopf nicht gedrückt ist, werden keine Einstellungen im Speicher vom Compod™ gespeichert. Um versehentliche Alarme zu verhindern, ist es ratsam, alle Einstellungen zu ändern, während der Alarm deaktiviert ist. Sobald alle Einstellungen geändert und gespeichert worden sind, aktivieren Sie den Alarm.

Compod[™] Instruction Manual

Alarm 1 wurde als Alarm bei hohem Durchfluss konfiguriert. Der Alarm wird aktiviert, wenn der Durchfluss größer als 300 NI/m wird. Eine Schwelle von 20 NI/m wurde geschaffen, indem der Tiefpunkt auf 280 gesetzt wurde.

Alarm 2 wurde als Alarm für niedrigen Durchfluss konfiguriert. Der Alarm wird aktiviert, wenn der Durchfluss die 50 Nl/m unterschreitet. Es wurde eine Schwelle von 30 Nl/m geschaffen, indem der Tiefpunkt auf 80 gesetzt wurde.

Wenn Hoch- und Tiefpunkt gleich eingestellt sind, löst der Alarm aus, wenn der Durchfluss höher als 300 NI/m wird, und wird deaktiviert, wenn der Durchfluss unter 300 sinkt. Bitte beachten Sie, dass bei einem Durchfluss von etwa 300 NI/m Schwingungen auftreten können.

Um den Alarm zu aktivieren, muss die Taste "Alarm aktivieren" gedrückt werden. Der Alarm bleibt so lange aktiv, wie die Alarmbedingung erfüllt ist. Wenn der Alarm gelöscht wird, während die Bedingung erfüllt ist, wird der Alarm sofort ausgelöst.

Weitere Informationen über das Alarmsystem finden Sie im Benutzerhandbuch.

REGISTERKARTE ANALOGER & DIGITALER AUSGANG

In dieser Registerkarte werden die analogen Eingangskanäle und digitalen Ausgänge gesteuert. Der maximale Bereich des Analog-Digital-Wandlers beträgt 0-1023.

Die folgende Tabelle gibt einen Überblick über die Einstellungen und die Eingangsbereiche für die analogen Kanäle:

Multi-	Eingabe-	Referenz	Eingangs-
plikatol	Iviouus	2 56V	bereich
1X	Spannung	2.50V	0.2.5V
0.5X	Spannung	2.56V	0.5V
1X	Spannung	5V	0.5V
0.5X	Spannung	5V	0.10V
1X	lst	2.56V	0.10mA
0.5X	lst	2.56V	0.20mA
1X	lst	5V	020mA
0.5X	lst	5V	0.40mA

Die Verwendung einer niedrigeren Referenz erhöht die Auflösung für kleine Signale.

REGISTERKARTE IMPULSAUSGABE

Der Impulsausgang ist mit dem Analogkanal 2 verknüpft. Wenn der Impulsausgang aktiviert ist, wird Analogkanal 2 deaktiviert.

Compod Application
status Status Activity -
Device Alarm system Analog in & digital out Pulse output Serial settings
Each time that the totalizer is incremented with N counts the output will generate a pulse with a fixed width (adjustable).
The pulse can be adjusted between 2.5 and 500 milliseconds (2.5 ms steps).
N can be set to a value between 0 and 255. Setting it to zero will disable the pulse output (enables the second analog input)
Pulse width 250 miliseconds
Smart Trak 2 Controller Firmware 2.044 Alarm1 Alarm2 Valve alarm Sensor failure Serial X20251 Tag Compod v1 Image: Compod v1

Compod[™] Instruction Manual