

red-y smart series / red-y industrial series

Instruction manual PROFINET interface

Table of contents

Intro	4
Overview	4
About this documentation	4
Connection	5
More about daisy chain	6
Profinet Topology	6
Device network setup	7
Status LED's	7
SYS – System status	7
ERR – Bus status	7
RUN – Run status	7
COM – Modbus communication status	8
PWR – Power	8
ALM – Alarm	8
Electrical power supply	9
Sub-D9 Pin assignment for Modbus RTU, power supply, analog signals	9
Pin assignment Ethernet RJ45 (Profinet/EtherCAT)	9
M12 Male pin assignments for Modbus RTU, power supply, analog signals	11
Pin assignment Ethernet M12-D (Profinet/EtherCAT)	11
Serial Interface	12
GSDML File	12
Alarms	12
Process Data Objects (PDO's)	13
Read with Input PDO's (slave to master)	13
Write with Output PDO's (master to slave)	14
Write Protect/Output Enable	14
Divers examples	15
Enable writing:	15
Specify flow rate	15
Set pressure set point	16
Control valve manually	16

vögtlin 🏈	Title: Instruction manual PROFINET in	terface	Date: Aug. 2021
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 2 / 32

Change history		32
Appendix A – Adding registers to	sub-slots in TwinCat 3.1	29
Register Description Output PDO	's	25
Register Description Input PDO's .		
Changing flow/pressure/va	alve position during operation	18
Detect and acknowledge ala	arms	17
Change pressure control ar	id flow control	

Title: Instruction manual PROFINET interface		Date: Aug. 2021	
Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 3 / 32	

Intro

This manual describes how to use the Vögtlin PROFINET interface with your PROFINET system.

PROFINET is an open Industrial Ethernet standard developed by the PROFIBUS Organization (PI). Based on Ethernet versatility, PROFINET make vertical integration of field level with Enterprise level easily. PROFINET is automation in real time, so it can cover all requirements of the Automation Industry. PROFINET is fit for factory automation, process automation, safety applications and motion control applications, etc.

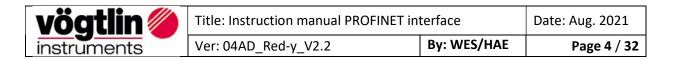
Detailed information on PROFINET can be found on the PROFIBUS website user organization, which also develops the PROFINET communication technology: www.profibus.com

Overview

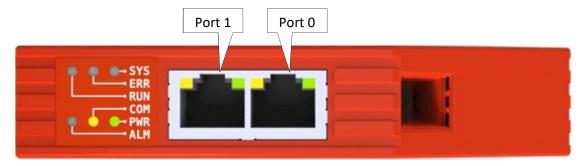
- PROFINET IO specification v2.33
- PROFINET IO devices conformance class B (RT)
- Security level 1 Netload class 2
- Endianness type at Voegtlin Instruments Device is **Big Endian**
- Power supply: 18 30 VDC / 340 mA (¼" Device) @ 24VDC
 560 mA (½" Device) @ 24VDC

About this documentation

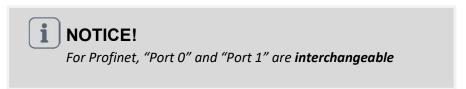
Content


This documentation contains only descriptions of the communication protocol (PROFINET).

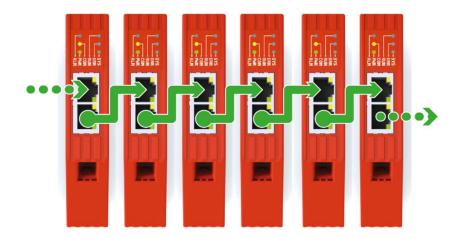
NOTICE!


This documentation is a supplement of *red-y smart series Operating Instructions digital* **Communication.** Please visit the Vögtlin website, <u>www.voegtlin.com</u>, and look under the download section to find the manuals.

The information in this documentation are valid for the following devices: red-y smart series und red-y industrial series.



Connection


The PROFINET device is equipped with two RJ45 connectors which both can be used to connect the device to a PROFINET master or switch.

Note: For reliable communication, it is advised to use Cat5E or higher graded cables.

The devices can be daisy-chained to optimize the cabling:

Note: It is important that each device has a unique name assigned in order to hook-up the devices with each other.

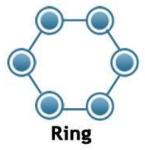
vögtlin 🍘	Title: Instruction manual PROFINET in	terface	Date: Aug. 2021
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 5 / 32

More about daisy chain

This configuration requires less cabling than alternative star topologies and thus is simpler and more cost-effective to implement. A daisy chain topology can be arranged in two ways:

A linear topology:

Message must go from one device to another in one direction.

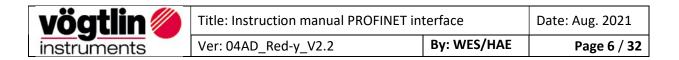


Inconvenient:

Communication failures in the case of a break in the chain

Ring topology:

It is formed by all the devices connected by each other through their ends.


Advantage:

This ensures that all the data is transmitted by the devices one after the other and if there is a broken link, then the data is transmitted in the reverse fashion ensuring that the signals are received.

Profinet Topology

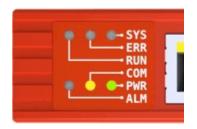
Profinet is very flexible when it comes to laying out the network.

However, Ring, line, or Tree and Star topologies comes with advantages and disadvantages that need to be considered at the design phase.

Device network setup

The device comes with the following network settings:

Name : "Red-y" or ("pnec-v1")
IP address : 192.168.0.50 or 0.0.0.0


The name and IP address can be changed using tools like **Proneta** (which can be downloaded from the Siemens website www.siemens.com).

Tips: Voegtlin uses following USB- to Ethernet Adapter: D-Link DUB-E100

Status LED's

The status LED's are located on top of the device.

SYS - System status

Colour	State	Description
	On (green)	PROFINET Operating system running
*	Blinking (red/green)	PROFINET OS waiting for firmware
	On (red)	PROFINET bootloader waiting for second stage loader
	Off	Power supply missing or hardware failure

ERR - Bus status

Colour	State	Description
**	Blinking (red)	No data exchange
	On (red)	No configuration; or low speed physical link; or no physical link
	Off	No error

RUN - Run status

Colour	State	Description
**	Blinking (red)	DCP signal service is initiated via the bus
	On (red)	Watchdog timeout; channel, generic or extended diagnosis present; system error
	Off	No error

vögtlin 🏈	Title: Instruction manual PROFINET in	terface	Date: Aug. 2021
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 7 / 32

COM - Modbus communication status

Colour	State	Description
*	Flashing (yellow)	Modbus messages are being exchanged
	Off	No communication

PWR - Power

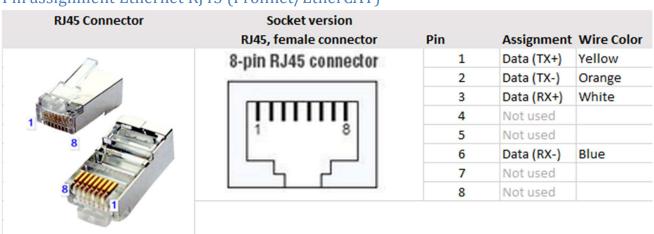
Colour	State	Description
	On	Device is powered and operational
	Off	Device is powered off

ALM - Alarm

Colour	State	Description
*	Blinking (red)	Alarm condition occurred. Check alarm status register for more info
	On (red)	Hardware failure. Disconnect the device from the power supply and connect it again. If the fault is still present, please send it to the responsible service center.
	Off	No alarm

vögtlin 🍅	Title: Instruction manual PROFINET in	Date: Aug. 2021	
instruments	Ver: 04AD_Red-y_V2.2 By: WES		Page 8 / 32

Electrical power supply

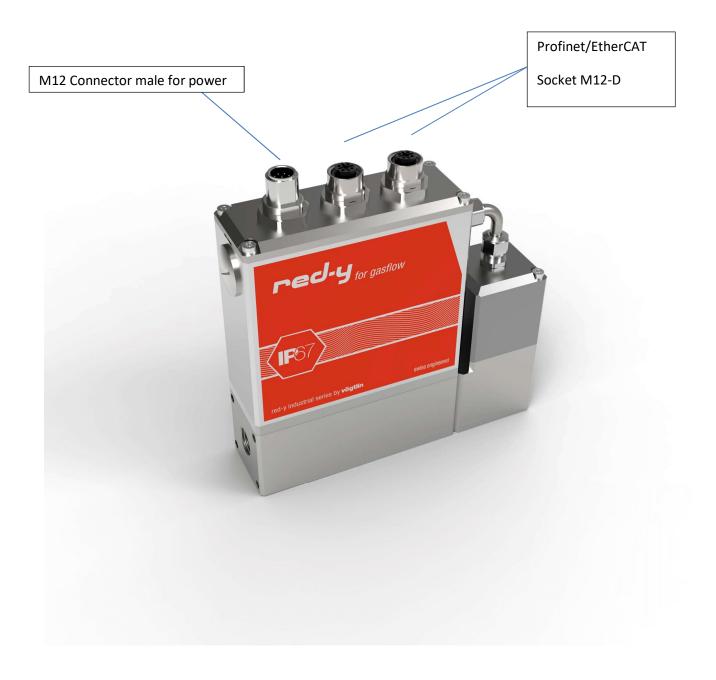

The device can be powered through the Sub-D9 connector which is located on the side of the device.

- Power supply: 18 30 VDC (15 VDC on request)
- Power consumption: ¼" valve 340mA (max), ½" valve 560mA (max)

Sub-D9 Pin assignment for Modbus RTU, power supply, analog signals

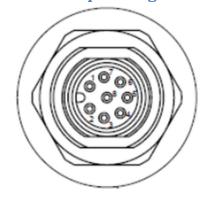
	0		Pin	Function
5	•		1	Analog ground
4	. •	9	2	OVDC supply ground
		8	3	+24 VDC supply voltage
3	• `		4	Analog output
2	• •	7	5	Analog input
1 H	• •	6	6	Tx+ RS485-Output (Y)
			7	Tx- RS485 Output (Z)
	\cap		8	Rx- RS485 Input (B)
	ري		9	Rx+ RS485 Input (A)

Pin assignment Ethernet RJ45 (Profinet/EtherCAT)



NOTICE!

More information can be found on *red-y smart series Operating Instructions SN>110000* Please visit the Vögtlin website, <u>www.voegtlin.com</u>, and look under the download section to find the manuals.


vögtlin 🍘	Title: Instruction manual PROFINET in	Date: Aug. 2021	
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 9 / 32

Red-y Industrial series with IP-67

vögtlin 🍘	Title: Instruction manual PROFINET in	Date: Aug. 2021	
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 10 / 32

M12 Male pin assignments for Modbus RTU, power supply, analog signals

1	B (+)
2	Output +
3	Setpoint +
4	0 Vdc
5	not connected
6	A (-)
7	24 Vdc
8	Common

Remark:

B(+) = RX+, TX+ and A(-) = RX-, TX-

Pin assignment Ethernet M12-D (Profinet/EtherCAT)

M12-D coding M12-D coding	Socket version M12-D coding , female connector	Pin	Assignment	Wire Color
	2	1	Data (TX+)	Yellow
		2	Data (RX+)	White
		3	Data (TX-)	Orange
		4	Data (RX-)	Blue
	3			

NOTICE!

More information can be found on *red-y industrial series Operating instructions*Please visit the Vögtlin website, <u>www.voegtlin.com</u>, and look under the download section to find the manuals.

vögtlin 🍅	Title: Instruction manual PROFINET in	Date: Aug. 2021	
instruments	Ver: 04AD_Red-y_V2.2 By: WES/HA		Page 11 / 32

Serial Interface

In addition to the PROFINET interface, the device has, as standard, a digital interface with the Modbus RTU protocol. These can be used to set and read out various parameters using the free "get-redy" software. We recommend that the device settings (e.g. device address) are made via this interface.

For this you need an interface cable "PDM-U" and a power supply unit "PSD".

If you do not have these accessories, please contact your sales partner.

NOTICE!

Any changes to the settings through the standard interface Modbus RTU, are not reflected in the Profinet PDO's. Please apply a **power reset** after changing the settings through the standard interface.

GSDML File

The GSDML file contains the facilities/features which the device offers to the PROFINET master. The file is called: GSDML-V2.33-Voegtlin Instruments-04AD-Red-y-2020mmdd.xml

The GSDML file is an xml file containing:

- Device identification info. This contains general information like:
 - Vendor (Vögtlin Instruments)
 - Vendor ID (0x04AD)
 - Product family (Red-y)
- Device Access Point (DAP) contains information about:
 - Used hardware
 - Ethernet related settings
 - Supported features

Note: The PROFINET interface only supports cyclic data exchange

Alarms

To handle alarms it is necessary to actively poll the available alarm PDO's "**Alarms Info**" & "**HW Status**" in the PLC Program.

vögtlin 🍘	Title: Instruction manual PROFINET in	Date: Aug. 2021	
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 12 / 32

Process Data Objects (PDO's)

PDO's are variables continuously transferred between the Device (slave) and the PLC (master)

The PROFINET interface supports only one slot for input and one slot for output.

Each sub-slot can have one register (from the list below) assigned to it. The input slot supports a maximum of 20 sub-slots. The output slot supports 12 sub-slots. When adding a sub-slot, a list is available (through the GSDML) with all the available registers. The order in which the registers can be added is not fixed.

Appendix A shows an example in TwinCAT.

This document describes how the data is encoded in the PDO's. The name of the register corresponds to the name used in the GSDML. The tables also show the Modbus registers which are linked to the PDO data. More information about the registers can be found on the Vögtlin website under the download section, look for digital communication.

Read with **Input PDO's** (slave to master)

Register	Modbus Addr.	Data	Description
	(zero base)	Type	·
Flow	0x0000	F32	Actual flow
Temp	0x0002	F32	Gas Temperature
Totalizer	0x0004	F32	Accumulated gas total
Set point Flow	0x0006	F32	Set point flow when in controller mode
Valve Power	0x000A	F32	Read valve PWM in %
Alarms	0x000C	UINT16	Indicates the alarm messages in a bit map
HW Status	0x000D	UINT16	Hardware error status register
Device setup	0x000E	UINT16	Setup control mode
Ramp Time	0x000F	UINT16	Changing time that it takes between set points
Flow Unit	0x0016	STR8	Flow unit
Gas Name	0x001A	STR8	Name of current gas
Serial Number	0x001E	UINT32	Serial number of the device
Device Type1	0x0023	STR8	Name of the instrument type / instrument code
PID Select	0x0035	UINT16	Select a PID preset for flow controller
Flow Limit	0x094F	F32	Maximum flow allowed
Device Type2	0x1004	STR8	Name of the instrument type / instrument code
Totalizer Unit	0x4048	STR8	Totalizer Unit
Enable SP storage	0x4050	UINT16	Enable the storing of the set point in EEPROM
LUT Select	0x4139	UINT16	Select a LUT from the calibrated list
Pressure	0x5F00	F32	Actual pressure (only with pressure Transmitter)
Pressure Min	0x5F02	F32	Minimum pressure set point
Pressure Max	0x5F04	F32	Maximum pressure set point
Set point pressure	0x5F06	F32	Set point pressure when in controller mode
Pressure Unit	0x5F08	STR8	Pressure Unit
Pressure PID select	0x5F10	UINT16	Select a PID preset for pressure controller

vögtlin 🍅	Title: Instruction manual PROFINET in	Date: Aug. 2021	
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 13 / 32

Write with Output PDO's (master to slave)

Register	Modbus	Data	Description
	Addr.	Type	
	(zero base)		
Totalizer	0x0004	F32	Accumulated gas total
Set point Flow	0x0006	F32	Set point flow when in controller mode
Valve Power	0x000A	F32	Set valve PWM in %
Device Setup	0x000E	UINT16	Setup control mode
Ramp Time	0x000F	UINT16	Changing time that it takes between set points
PID Select	0x0035	UINT16	Select a PID preset for flow controller
Factory Reset	0x0037	UINT16	Restore unit to previous backup
HW Error Reset	0x404F	UINT16	Reset hardware errors in status register
Enable SP storage	0x4050	UINT16	Enable the storing of the set point in EEPROM
LUT Select	0x4139	UINT16	Select a LUT from the calibrated list
Set point pressure	0x5F06	F32	Set point pressure when in controller mode
Pressure PID select	0x5F10	UINT16	Select a PID preset for pressure controller
Soft Reset	0x0034	UINT16	Software reset of the device
Write Protect		UINT16	Enable output PDO's
/Output Enable			

Write Protect/Output Enable

At power-up the output PDO's are disabled. This means that any changes to the output PDO will not be executed by the Device. In order to enable writing to the Device, it is necessary to write "Bit weight or the sum of the Bit weight value into Write Protect / Output Enable register. Each bit in this register corresponds to a "Selected output PDO register". The table below gives an overview:

Bit	Selected output PDO register	Bit weight
0	Totalizer	1
1	Set point Flow	2
2	Valve Power	4
3	Device Setup	8
4	Ramp Time	16
5	PID Select	32
6	Factory Reset	64
7	HW Error Reset	128
8	Enable SP storage	256
9	LUT Select	512
10	Set Point pressure	1024
11	Pressure PID Select	2048
12	Soft Reset	4096

vögtlin 🍅	Title: Instruction manual PROFINET interface		Date: Aug. 2021
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 14 / 32

Divers examples

Enable writing:

Input PDO's = Read= Rd and Output's PDO's = Write = Wr

- To **enable writing a value to the set point (flow)**, set bit 1 with "Bit weight = 2", in writing "Output enable /Write protect" with value = 2
- To **enable writing the Totalizer & set point (flow)**, add both Bit weight, and write "Output enable/Write Protect" with value = 3

NOTICE!

Why the register does not react of values modification?

Nothing will happen, if the register has already value = "0" and you want again to update with this same value.

So we first need to modify the value. In this case it has to be different of "0", then we can write again value = "0".

This is currently happening when "reset of Totalizer" or "HW error reset".

Specify flow rate

Registers used (Rd*): Flow Limit, Flow

Registers used (Wr**): Write Protect, Set point Flow

- 1. Determine final value: Query register(Rd) Flow Limit (Not mandatory if end value is known)
- 2. Enable flow: Register(Wr): **Write Protect** enter value 2 (= bit weight for **Set point Flow**), so that the Vögtlin device is ready for a set point.
- 3. Set flow: Register(Wr) Set point Flow e.g. enter the determined value of point 1
- 4. read actual value flow: Register(Rd) Flow

vögtlin Title: Instruction manual PROFINET interface		Date: Aug. 2021	
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 15 / 32

Set pressure set point

Info: The device must already be set to pressure control.

Registers used (Rd): **Pressure, Pressure min, Pressure max**Registers used (Wr): **Write Protect, Set point Pressure**

- 1. Determine max/minimum value: Register(Rd) Query **Pressure min, Pressure max** (Not mandatory if end value is known)
- 2. Enable pressure: Enter register(Wr) **Write Protect** the value 1024 (= bit weight for **Set point Pressure**), so that the Vögtlin device is ready for a set point pressure.
- 3. Set point pressure: Register(Wr) **Set point Pressure** e.g. Enter the determined value of point 1.
- 4. read actual value pressure: Register(Rd) Pressure

Control valve manually

Info: To be able to control the valve directly, the control mode (**Device Setup**) must first be changed.

Registers used (Rd): Valve Power, Flow

Registers used (Wr): Write Protect, Device Setup, Valve Power

- 1. Enable Device Setup and **Valve Power**: Enter the value 12 into Register(Wr) **Write Protect** (= bit weight 4 for **Valve Power** + 8 for **Device Setup**)
- 2. Changing the control mode: enter the value 10 in register(Wr) **Device Setup**
- 3. Default control value valve: enter register(Wr) **Valve Power** e.g. 25 for 25%. (Warning! 25% valve position does not mean 25% flow. Most valves only open at over 35%).
- 4. Control value of valve: Register(Rd) Valve Power Or
- 5. read actual value flow: Register(Rd) Flow

Warning!: In order to be able to control the set point via the register(Wr) **Set Point Flow** again, the register(Wr) **Device Setup** must be set to 1(=Digital) again.

vögtlin 🍅	Title: Instruction manual PROFINET interface		Date: Aug. 2021
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 16 / 32

Change pressure control and flow control

Registers used (Rd): Flow, Pressure

Registers used (Wr): Write Protect, Device Setup, Set Point Flow, Set Point Pressure

- 1. Enable **Device Setup**, **Set point Flow**, **Set point Pressure**: Register(Wr) **Write Protect** enter the value 1034 (= bit weight 8 for **Device Setup** + 2 for **Set point Flow** + 1024 for **Set Point Pressure**)
- 2. Change the control mode: enter register(Wr) **Device Setup** value 5 for pressure control or value 1 for flow control
- 3. Preset pressure set point: Register(Wr) **Set point Pressure** e.g. 2 for 2bar a (depending on the scaling of the pressure transmitter)
- 3.1 Presetting of flow setpoint: Register(Wr) **Set point Flow** e.g. 1 for 1 ln/min (depending on the scaling of the flow controller)
- 4. Read actual value pressure: Register(Rd) **Pressure**Or
- 4.1 Read actual value flow: Register(Rd) Flow

Warning!: If a value is entered for both set points flow and pressure, this value is taken over directly by switching over the control mode (using **Device Setup**) as long as the bit is properly set in **Write Protect**.

Detect and acknowledge alarms

Registers used (Rd): HW Status

Registers used (Wr): Write Protect, HW Error Reset

1. Enable **HW Error Reset**: Enter the value 128 into register(Wr) **Write Protect**Determine second alarm: Read register(Rd) **HW status**. A value between 0 and 11 is displayed here Acknowledge 3rd alarm: Register(Wr) **HW Error Reset** enter the value displayed at **HW Status**.

Warning!: After an alarm has been acknowledged, it will not be displayed again until the device has been restarted, or **Soft Reset** has been performed.

vögtlin 🍅	Title: Instruction manual PROFINET interface		Date: Aug. 2021
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 17 / 32

Changing flow/pressure/valve position during operation

Info: For certain applications it is useful to switch between different controls modes. E.g. flushing processes without having to set to 0.

Used registers (Rd): Flow, Pressure, Valve Power

Registers used (Wr): Write Protect, Device Setup, Set Point Flow, Set Point Pressure, Valve Power

- 1. Enable **Device Setup, Set Point Flow, Valve Power, Set Point Pressure**: Register(Wr) **Write Protect** enter the value 1038 (2+4+8+1024)
- 2. Preset pressure set point: Register(Wr) **Set Point Pressure** e.g. 2 for 2bar a (depending on the scaling of the pressure transmitter)
- 2.1 Preset flow set point: Register(Wr) **Set Point Flow** e.g. 1 for 1 ln/min (depending on the scaling of the flow controller)
- 2.2 Default control value for valve: Enter register (Wr) Valve Power e.g. 100 for 100%.
- 3. Change the control modes: enter Register(Wr) **Device Setup** the value 5 for pressure control, 1 for flow control or 10 for manual valve control

If a value is now entered for the **setpoints flow**, pressure and manual valve control, this value is taken over directly by switching over the control mode as long as the bit is set in **Write Protect**.

- 5. Read actual value pressure: Register(Rd) Pressure
- 5.1 Read actual value flow: Register(Rd) Flow
- 5.2 Read control value for valve: Register(Rd) Valve Power

Warning!: With pressure regulators it must be ensured that the overload limit of the pressure transmitter is not exceeded.

vögtlin 🍅	Title: Instruction manual PROFINET interface		Date: Aug. 2021
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 18 / 32

Register Description Input PDO's

Description: Gas Flow	Data type: FLOAT32
Measured gas flow	

Description: Totalizer	Data type: FLOAT32
Accumulated gas flow	

Description: Ramp Data type: UINT16

Controls the changing time that it takes from the current nominal value to a new nominal value

0: Function disabled 200.. 10000: time in ms

Description: Device Type1	Data type: STRING
Name of the instrument type / instrument code	

Description: Device Type2	Data type: STRING
Name of the instrument type / instrument code	

Description: Set Point Flow Data type: FLOAT32

Set point of the controller.

To activate the set point, the controller mode (Output PDO: Device Setup) has to be in mode 0 (automatic) or in mode 1 (Digital).

vögtlin Title: Instruction manual PROFINET interface		Date: Aug. 2021	
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 19 / 32

Description: HW Status (Hardware Status)

Data type: UINT16

Indicates eventual malfunctions during operation of the instrument. . It indicates the alarm messages in a bit map. This Information persists even the problem has been solved and has to be reset with the parameter 'HW error reset'

All alarm messages are reset if the instrument is switched off and activated again at power on if an alarm persists.

Bit #	Description
0	Power-up alarm
	If the instrument is switched off with activated Power-up alarm and switched on again, then the active set point will be the readjusted power-up set point. (see parameter power-up alarm set point). This status will only be checked at power-up.
1	Alarm analog set point
	Raised if the analog set point is outside the valid range (21.6mA, 10.8V). This alarm is only active if the instrument is configured as a flow controller.
2	Zero point or leakage alarm
	Raised if at a valve control signal of 0% (Valve electrically closed) a flow is measured. Possible causes are: An incompletely closed valve, internal leakage or a zero drift. This alarm is only active if the instrument is a flow controller.
3	No gas / jammed valve alarm
	Raised if at a valve control signal of 100% (valve electrically fully open) no gas flow is measured.
	This alarm is only active if the instrument is configured as a flow controller.
	Warning!: After an alarm has been acknowledged, it will not be displayed again until the device
	has been restarted, or Soft Reset has been performed.
4	No reaction
	Raised if the valve control signal is raised or lowered and no variation of the gas flow is measured
	Possible causes are: Jammed valve, changed pressure conditions or valve too small (after a
	change of gas). This alarm is only active if the instrument is configured as a flow controller.
5	Sensor communication error
	Raised if a communication problem occurs between the sensor and the electronic module. In this
_	case the measurements are probably wrong.
6	Not used
7	EEPROM access check
	Raised if access errors to the EEPROM are detected. In this case the correct function of the
0	instrument is no longer guaranteed.
8	Not used
9	Not used
10	Current input overload
11	Raised if current at analog input exceeds 25mA.
11	The sensor serial number does not match the loaded gas data. The valve is closed, the actual value is set to 0.
125	Not used

vögtlin 🏈	Title: Instruction manual PROFINET interface		Date: Aug. 2021
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 20 / 32

Description: LUT Select Data type: UINT16

Specifies, which gas data set is to be used. Up to 10 different calibration data sets can be saved in the instrument. They have to be created by the manufacturer.

Description: Gas Temperature Data type: FLOAT32

Measured value temperature [°C].

Note:

Due to self-heating this temperature may be slightly higher range than the effective gas temperature at the device inlet.

Description: Valve Power Data type: FLOAT32

Contains the actual control value for the valve whether the control value is generated from the controller (automatic mode) or manually set via ModBus. If the register control mode (Output PDO: Device Setup) is defined as mode 10, the control value is immediately loaded into the register. In any other modes the value is stored in a buffer and becomes active when control mode 10 has been activated. It is possible to adjust directly the position of the control valve [0...100%].

Description: Serial Number Data type: UINT32

Clear and unique serial number of the electronic part of the measuring instrument (PCB).

Description: Flow Limit

Maximum allowed flow

Data type: FLOAT32

Description: Flow Unit

Name of the selected flow unit

Data type: STRING

Description: Gas Name

Name of the selected gas

Data type: STRING

Description: Pressure Units

Pressure units

Data type: STRING

Description: Pressure Data type: FLOAT32
Actual pressure (in Device Setup)

vögtlin 🍘	Title: Instruction manual PROFINET interface		Date: Aug. 2021
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 21 / 32

Description: Set Point Pressure Data type: FLOAT32

Set point pressure of the controller.

To activate the set point, the controller mode (Output PDO: Device Setup) has to be in mode 0 (automatic) or in mode 1 (Digital).

Descript	ion: Device Setup	Data type: UINT16			
Selection	Selection of the controller mode and the source of the set_point.				
As example if you want to switch between flow or pressure control and vis versa, with value = "1" we					
would co	ontrol flow, and with value ="5" we would regulate pressure				
Value	Description				
0					
	The source of set point is automatically selected, i.e.: As standard the	ne analog set point (voltage or			
	current signal) is active. If a digital set point is sent (via ModBus) au	tomatically the red-y switches			
	to 'Digital mode' and the analog set point is disabled.				
1	Digital set point				
	Activates the digital set point via digital communication (ModBus, PROFINET)				
2 Analog set point (standard setting) Selects the analog signal as set point source.					
5	Pressure controller activated				
6	Back Pressure controller activated				
10	Direct adjustment of the valve signal				
	Deactivates the automatic control mode. Sets the valve control to t	he value of register 'valve			
	power'				
20	Set point 0%				
	Sets the set point to 0%.				
21 Set point 100% Sets the set point to 100%.					
22	Valve fully closed				
Deactivates the automatic control mode. Sets the valve control to 0% (Valve fully closed).		% (Valve fully closed).			
23 Valve fully open					
Deactivates the automatic control mode. Sets the valve control signal to 100% (Valve					

Descript	ion: Alarms	Data type: UINT16	
Indicate	Indicates the alarm messages in a bit map. The bit pattern depends on the status of the instrument and		
the detected alarms. If an alarm condition is no longer valid the corresponding bit is automatically erased.			
Value	Description		
0	Indicates a negative flow (flow value < 0)		
1	Indicates a negative flow exceeding the backflow setpoint. The bit remains set until a positive flow		
	is detected.		
214	Not used		
15	Indicates a hardware error (register HW Status). This bit is therefore	e an OR-function of all	
	hardware errors.		

vögtlin 🍘	Title: Instruction manual PROFINET interface		Date: Aug. 2021
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 22 / 32

Description: PID Select Data type: UINT16

The controller consists of altogether five complete control parameter sets. Three of these sets were defined by the manufacturer and cannot be changed by the user (so-called manufacturer control parameter sets). **Two sets can be changed at wish by the user** (so-called user control parameter sets).

One of the set value (0 to 4) is used for the current control. This setting can be saved in EEPROM and is available again with the next activation. This set can be read, changed and re-written. Afterwards, the controller immediately works with the modified set.

Function of the pre-defined control parameter sets (values 2 to 4):

Due to the flow end values, the correspondingly applied control valve and the pressure ratios, these sets receive different pre-defined parameters P, I, D and N.

The aim is to provide the controller with the following different manufacturer properties with the three sets (values 2 to 4):

Value	Type	
0	User control parameter set 1 (default)	
1	User control parameter set 2	
2	Manufacturer control parameter fast:	
	Fast response time with the corresponding overshooting (fast	
	response)	
3	Manufacturer control parameter set medium:	
	Medium response time with a low overshooting tendency.	
4	Manufacturer control parameter set slow:	
	Slow response time without overshooting (slow response)	

<u>Function of customized control parameter sets (values 0 and 1):</u>

Remark dedicated for Flow controller:

By using **User control parameter set 1** or **set 2**, customized PID-Parameter (also called Kp/Ki/Kd) for the Flow controller can be defined.

However, these will have to be set up via ModBus, or via our free software get red-y by using the Graph Tool. You can find more details in "smart series Operating Instructions SN>110000" in the section "Settings for control parameters".

Remark dedicated for Pressure controller:

Look in this manual for: "Description: Pressure PID Select"

vögtlin 🍅	Title: Instruction manual PROFINET interface		Date: Aug. 2021
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 23 / 32

Description: Enable SP (Set Point) Storage

Data type: UINT16

To activate the Set Point Storage, the controller mode (Output PDO: Device Setup) has to be in mode 1 (Digital).

Specifies whether the set value is automatically stored in the EEPROM. The service life of an EEPROM depends on the number of write cycles. The guaranteed number of write cycles is 1 million. If the set value is set every 10 minutes, the resulting service life is 19 years.

If the set value is set at significantly shorter intervals, automatic storage should be disabled.

0 = Manual save mode

1 = Automatic save mode

Description: Pressure PID Select

Data type: UINT16

See "PID Select" description, as both have the same operating principle.

Remark dedicated for Pressure controller:

Using **User control parameter set 1** or **set 2**, customized PID-Parameter (also called Kp/Ki/Kd) for the pressure controller can be defined.

However, these will have to be setup with our free software get red-y. You can find more details in the manual "Software get red-y Operating Instructions" in the section "Pressure controller" and by searching for "PID-parameter".

vögtlin 🥟	
instruments	

Title: Instruction manual PROFINET in	Date: Aug. 2021	
Ver: 04AD_Red-v_V2.2	By: WES/HAE	Page 24 / 32

Register Description Output PDO's

Description: Totalizer	Data type: FLOAT32
Accumulated gas flow	

Description: Set Point Flow Data type: FLOAT32

Set point of the controller.

To activate the set point, the controller mode (Output PDO: Device Setup) has to be in mode 0 (automatic) or in mode 1 (digital).

Description: Factory reset Data type: FLOAT32

Restore unit to previous backup

Create or restore a backup. Performing the restore/backup will trigger a reset of the device. During start-up the restore/backup is performed.

Value	Type
1	Backup of the EEPROM is made
2	Restore the EEPROM from a backup
3	Remove the backup. A backup has to be made first in order to do a
	restore.

Description: Hardware Error Reset Data type: UINT16

Resets the alarm states of the instrument that occurred during operation. The meaning of the individual error bits are described in the register hardware status (Input PDO: HW Status). Error bits cannot be set manually as they are always a consequence of faulty operating states. If you want to reset an error bit in the register hardware status, the corresponding bit is set in register Output PDO: HW Error Reset. If a bit remains on zero, the error bit is also not changed.

Warning!: After an alarm has been acknowledged, it will not be displayed again until the device has been restarted, or **Soft Reset** has been performed.

Description: LUT Select Data type: UINT16

Specifies, which gas data set is to be used. Up to 10 different calibration data sets can be saved in the instrument. They have to be created by the manufacturer.

vögtlin 🍘	Title: Instruction manual PROFINET interface		Date: Aug. 2021
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 25 / 32

Description: Valve Power Data type: FLOAT32

Contains the actual control value for the valve whether the control value is generated from the controller (automatic mode) or manually set via ModBus. If the register control mode (Output PDO: Device Setup) is defined as mode 10 the control value is immediately loaded into the register. In any other modes the value is stored in a buffer and becomes active when control mode 10 has been activated. It is possible to adjust directly the position of the control valve [0...100%].

Descript	ion: Device Setup	Data type: UINT16		
Selection of the controller mode and the source of the set_point.				
As example if you want to switch between flow or pressure control and vis versa, with value = "1" we				
would co	ontrol flow, and with value ="5" we would regulate pressure			
Value	Value Description			
0 Automatic set point selection				
	The source of set point is automatically selected, i.e.: As standard th			
	current signal) is active. If a digital set point is sent (via ModBus) aut	comatically the red-y switches		
	to 'Digital mode' and the analog set point is disabled.			
1	Digital set point			
	Activates the digital set point via digital communication (ModBus, PROFINET)			
2	Analog set point (standard setting)			
	Selects the analog signal as set point source.			
5	Pressure controller activated Back pressure controller activated			
6				
10	Direct adjustment of the valve signal			
	Deactivates the automatic control mode. Sets the valve control to the	ne value of register 'valve		
	power´			
20	Set point 0%			
	Sets the set point to 0%.			
21	Set point 100%			
	Sets the set point to 100%.			
22	Valve fully closed			
	Deactivates the automatic control mode. Sets the valve control to 0	% (Valve fully closed).		
23 Valve fully open				
	Deactivates the automatic control mode. Sets the valve control sign	al to 100% (Valve fully open).		

vögtlin 🍅	Title: Instruction manual PROFINET interface		Date: Aug. 2021
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 26 / 32

Description: PID Select Data type: UINT16

The controller consists of altogether five complete control parameter sets. Three of these sets were defined by the manufacturer and cannot be changed by the user (so-called manufacturer control parameter sets). **Two sets can be changed at wish by the user** (so-called user control parameter sets).

One of the set value (0 to 4) is used for the current control. This setting can be saved in EEPROM and is available again with the next activation. This set can be read, changed and re-written. Afterwards, the controller immediately works with the modified set.

Function of the pre-defined control parameter sets (values 2 to 4):

Due to the flow end values, the correspondingly applied control valve and the pressure ratios, these sets receive different pre-defined parameters P, I, D and N.

The aim is to provide the controller with the following different manufacturer properties with the three sets (values 2 to 4):

Value	Туре
0	User control parameter set 1 (default)
1	User control parameter set 2
2	Manufacturer control parameter fast:
	Fast response time with the corresponding overshooting (fast
	response)
3	Manufacturer control parameter set medium:
	Medium response time with a low overshooting tendency.
4	Manufacturer control parameter set slow:
	Slow response time without overshooting (slow response)

Function of customized control parameter sets (values 0 and 1):

Remark dedicated for Flow controller:

By using **User control parameter set 1** or **set 2**, customized PID-Parameter (also called Kp/Ki/Kd) for the Flow controller can be defined.

However, these will have to be set up via ModBus, or via our free software get red-y by using the Graph Tool. You can find more details in "smart series Operating Instructions SN>110000" in the section "Settings for control parameters".

Remark dedicated for **Pressure controller**:

Look in this manual for: "Description: Pressure PID Select"

vögtlin 🍅	Title: Instruction manual PROFINET interface		Date: Aug. 2021
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 27 / 32

Description: Enable SP (Set Point) Storage

Data type: UINT16

To activate the Set Point Storage, the controller mode (Output PDO: Device Setup) has to be in mode 1 (Digital).

Specifies whether the set value is automatically stored in the EEPROM. The service life of an EEPROM depends on the number of write cycles. The guaranteed number of write cycles is 1 million. If the set value is set every 10 minutes, the resulting service life is 19 years.

If the set value is set at significantly shorter intervals, automatic storage should be disabled.

0 = Manual save mode

1 = Automatic save mode

Description: Set Point Pressure

Data type: FLOAT32

Set point of the pressure controller.

To activate the set point, the controller mode (Output PDO: Device Setup) has to be in mode 0 (automatic) or in mode 1(Digital).

Description: Pressure PID Select

Data type: UINT16

See "PID Select" description, as both have the same operating principle.

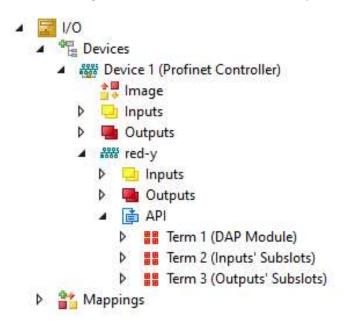
Remark dedicated for Pressure controller:

Using **User control parameter set 1** or **set 2**, customized PID-Parameter (also called Kp/Ki/Kd) for the pressure controller can be defined.

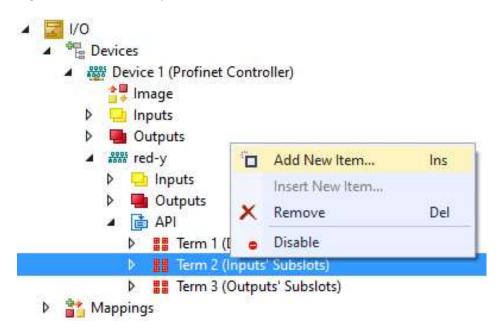
However, these will have to be setup with our free software get red-y. You can find more details in the manual "Software get red-y Operating Instructions" in the section "Pressure controller" and by searching for "PID-parameter".

Description: Soft Reset

Data type: UINT16

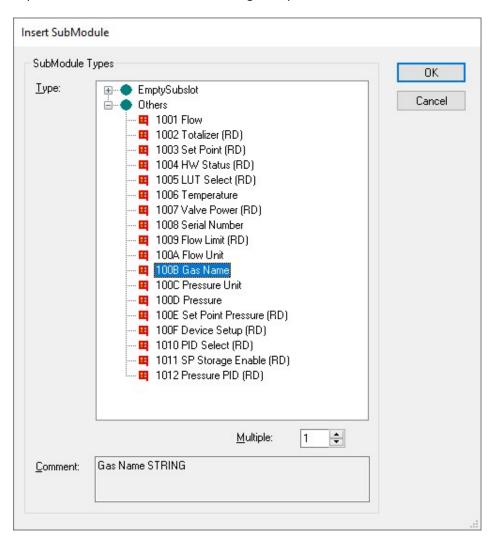

A software reset of the measuring or control instrument takes place if a value bigger than zero is written in this register.

vögtlin 🏈	
instruments	

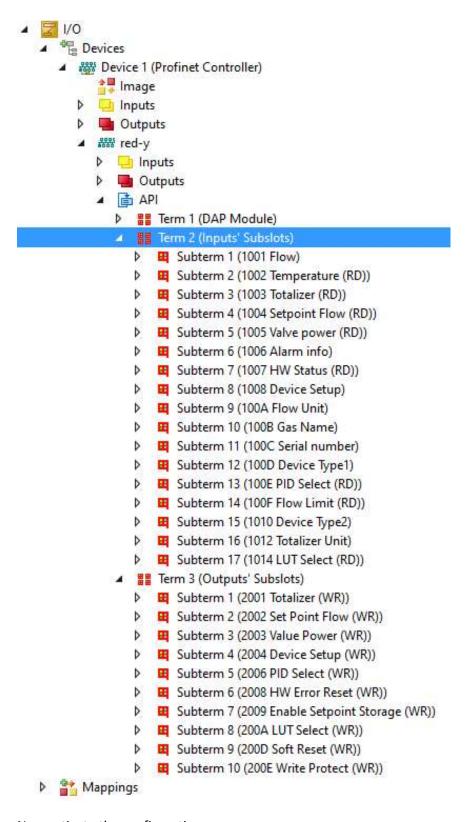

Title: Instruction manual PROFINET interface		Date: Aug. 2021
Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 28 / 32

Appendix A - Adding registers to sub-slots in TwinCat 3.1

After the Voegtlin device has been added to the system, expand the API entry:

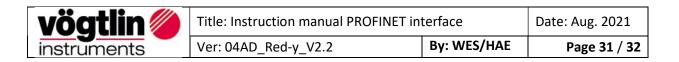


Right click on Term 2 (Inputs' Subslots) and select "Add New Item":


vögtlin 🍘	Title: Instruction manual PROFINET interface		Date: Aug. 2021
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 29 / 32

Expand the "Others" list and select a register, press "OK":

Continue and add the registers needed. Do the same with Term 3 (Outputs' Subslots).


vögtlin 🍘	Title: Instruction manual PROFINET interface		Date: Aug. 2021
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 30 / 32

Now activate the configuration.

More information about TwinCAT can be found at: https://www.beckhoff.com/twincat/

Note: Tutorial TwinCAT profinet and the TwinCAT profinet project can also be found on our Website.

Change history

Date	Version	Replaced	Author	Note
09 Aug. 21	V2.1	V2.2	HAE	Review of "Description: PID Select" as well as "Description: Pressure PID Select" Add paragraph "Change history"
17 Sept. 20	V2.0	V2.1	HAE	review of Warning descriptions

vögtlin 🍅	Title: Instruction manual PROFINET interface		Date: Aug. 2021
instruments	Ver: 04AD_Red-y_V2.2	By: WES/HAE	Page 32 / 32